public void generateTestInference() { if (lda == null) { System.out.println("Should run lda estimation first."); System.exit(1); return; } if (testTopicDistribution == null) testTopicDistribution = new double[test.size()][]; TopicInferencer infer = lda.getInferencer(); int iterations = 800; int thinning = 5; int burnIn = 100; for (int ti = 0; ti < test.size(); ti++) { testTopicDistribution[ti] = infer.getSampledDistribution(test.get(ti), iterations, thinning, burnIn); } }
public static void main(String[] args) { // String malletFile = "dataset/vlc_lectures.all.en.f8.mallet"; // String simFile = "dataset/vlc/sim5p.csv"; // String solutionFile = "dataset/vlc/task1_solution.en.f8.lm.txt"; // String queryFile = "dataset/task1_query.en.f8.txt"; // String targetFile = "dataset/task1_target.en.f8.txt"; String malletFile = "dataset/vlc/folds/all.0.4189.mallet"; String trainMalletFile = "dataset/vlc/folds/training.0.mallet"; String testMalletFile = "dataset/vlc/folds/test.0.mallet"; String queryFile = "dataset/vlc/folds/query.0.csv"; String linkFile = "dataset/vlc/folds/trainingPairs.0.csv"; String targetFile = "dataset/vlc/folds/target.0.csv"; String solutionFile = "dataset/vlc/task1_solution.en.f8.lm.txt"; int numTopics = 160; int numIterations = 200; double alpha = 0.0016; double beta = 0.0001; InstanceList train = InstanceList.load(new File(trainMalletFile)); InstanceList test = InstanceList.load(new File(testMalletFile)); SeparateParallelLda spl = new SeparateParallelLda(train, test); spl.trainDocuments(numTopics, numIterations, alpha, beta); spl.generateTestInference(); spl.lda.printTopWords(System.out, 10, true); BasicTask1Solution solver = new Task1SolutionWithSeparateData(spl); double precision; try { solver.retrieveTask1Solution(queryFile, solutionFile); precision = Task1Solution.evaluateResult(targetFile, solutionFile); System.out.println( String.format( "SeparateParallelLda: iteration: %d, precisoion: %f", numIterations, precision)); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }
/** * Initialize this separate model using a complete list. * * @param documents * @param testStartIndex */ public void divideDocuments(InstanceList documents, int testStartIndex) { Alphabet dataAlpha = documents.getDataAlphabet(); Alphabet targetAlpha = documents.getTargetAlphabet(); this.training = new InstanceList(dataAlpha, targetAlpha); this.test = new InstanceList(dataAlpha, targetAlpha); int di = 0; for (di = 0; di < testStartIndex; di++) { training.add(documents.get(di)); } for (di = testStartIndex; di < documents.size(); di++) { test.add(documents.get(di)); } }