/* * Selects the integration scale that maximize LoG in point c */ float selIntegrationScale(final FImage image, float si, Pixel c) { FImage L; int cx = c.x; int cy = c.y; float maxLap = -Float.MAX_VALUE; float maxsx = si; float sigma, sigma_prev = 0; L = image.clone(); /* * Search best integration scale between previous and successive layer */ for (float u = 0.7f; u <= 1.41; u += 0.1) { float sik = u * si; sigma = (float) Math.sqrt(Math.pow(sik, 2) - Math.pow(sigma_prev, 2)); L.processInplace(new FGaussianConvolve(sigma, 3)); sigma_prev = sik; // Lap = L.process(LAPLACIAN_KERNEL_CONV); float lapVal = sik * sik * Math.abs(LAPLACIAN_KERNEL_CONV.responseAt(cx, cy, L)); // float lapVal = sik * sik * Math.abs(Lap.pixels[cy][cx]); if (lapVal >= maxLap) { maxLap = lapVal; maxsx = sik; } } return maxsx; }
AbstractStructureTensorIPD selDifferentiationScaleFast( FImage img, AbstractStructureTensorIPD ipd, float si, Pixel c) { AbstractStructureTensorIPD best = ipd.clone(); float s = 0.75f; float sigma; FImage L; L = img.clone(); float sd = s * si; // Smooth previous smoothed image L sigma = sd; L.processInplace(new FGaussianConvolve(sigma, 3)); // X and Y derivatives best.setDetectionScale(sd); best.setIntegrationScale(si); best.setImageBlurred(true); best.findInterestPoints(L); // M = calcSecondMomentMatrix(best, c.x, c.y); // EigenValueVectorPair meig = MatrixUtils.symmetricEig2x2(M); // Matrix eval = meig.getD(); // double eval1 = Math.abs(eval.get(0, 0)); // double eval2 = Math.abs(eval.get(1, 1)); return best; }
@Override public void beforeUpdate(MBFImage frame) { FImage gimg = frame.flatten(); // bring to sigma = 1.0 gimg.processInplace(new FGaussianConvolve(1f)); for (int i = 0; i < 3; i++) { final int t = (int) Math.pow(2, i); final double sigma = Math.sqrt(t); final float sf = t; harris.setDetectionScale((float) sigma); harris.setImageBlurred(true); harris.findInterestPoints(gimg); final float iscale = harris.getIntegrationScale(); final float samplesize = 4 * iscale + 1; for (final InterestPointData ipd : harris.getInterestPoints((float) (1e-5))) { ipd.x *= sf; ipd.y *= sf; frame.drawShape(new Circle(ipd, sf * samplesize), RGBColour.RED); } gimg.processInplace(new FGaussianConvolve((float) Math.sqrt((Math.pow(2, i + 1) - t)))); gimg = ResizeProcessor.halfSize(gimg); } }
@Override public void run() { for (MBFImage image : this.stream) { FImage gimage = Transforms.calculateIntensityNTSC(image); // gimage.processInplace(this.thresholder); gimage.threshold(0.7f); displayFrame(gimage); // trackInputs(image); // handleInputs(image); } }
private void displayCurrentPatch( FImage unwarped, float unwarpedx, float unwarpedy, FImage warped, int warpedx, int warpedy, Matrix transform, float scale) { DisplayUtilities.createNamedWindow("warpunwarp", "Warped and Unwarped Image", true); logger.debug("Displaying patch"); float resizeScale = 5f; float warppedPatchScale = resizeScale; ResizeProcessor patchSizer = new ResizeProcessor(resizeScale); FImage warppedPatchGrey = warped.process(patchSizer); MBFImage warppedPatch = new MBFImage(warppedPatchGrey.clone(), warppedPatchGrey.clone(), warppedPatchGrey.clone()); float x = warpedx * warppedPatchScale; float y = warpedy * warppedPatchScale; float r = scale * warppedPatchScale; warppedPatch.createRenderer().drawShape(new Ellipse(x, y, r, r, 0), RGBColour.RED); warppedPatch.createRenderer().drawPoint(new Point2dImpl(x, y), RGBColour.RED, 3); FImage unwarppedPatchGrey = unwarped.clone(); MBFImage unwarppedPatch = new MBFImage( unwarppedPatchGrey.clone(), unwarppedPatchGrey.clone(), unwarppedPatchGrey.clone()); unwarppedPatch = unwarppedPatch.process(patchSizer); float unwarppedPatchScale = resizeScale; x = unwarpedx * unwarppedPatchScale; y = unwarpedy * unwarppedPatchScale; // Matrix sm = state.selected.secondMoments; // float scale = state.selected.scale * unwarppedPatchScale; // Ellipse e = EllipseUtilities.ellipseFromSecondMoments(x, y, sm, scale*2); Ellipse e = EllipseUtilities.fromTransformMatrix2x2(transform, x, y, scale * unwarppedPatchScale); unwarppedPatch.createRenderer().drawShape(e, RGBColour.BLUE); unwarppedPatch.createRenderer().drawPoint(new Point2dImpl(x, y), RGBColour.RED, 3); // give the patch a border (10px, black) warppedPatch = warppedPatch.padding(5, 5, RGBColour.BLACK); unwarppedPatch = unwarppedPatch.padding(5, 5, RGBColour.BLACK); MBFImage displayArea = warppedPatch.newInstance(warppedPatch.getWidth() * 2, warppedPatch.getHeight()); displayArea.createRenderer().drawImage(warppedPatch, 0, 0); displayArea.createRenderer().drawImage(unwarppedPatch, warppedPatch.getWidth(), 0); DisplayUtilities.displayName(displayArea, "warpunwarp"); logger.debug("Done"); }
/** * an example run * * @param args * @throws IOException */ public static void main(String[] args) throws IOException { float sd = 5; float si = 1.4f * sd; HessianIPD ipd = new HessianIPD(sd, si); FImage img = ImageUtilities.readF( AffineAdaption.class.getResourceAsStream("/org/openimaj/image/data/sinaface.jpg")); // img = img.multiply(255f); // ipd.findInterestPoints(img); // List<InterestPointData> a = ipd.getInterestPoints(1F/(256*256)); // // System.out.println("Found " + a.size() + " features"); // // AffineAdaption adapt = new AffineAdaption(); // EllipticKeyPoint kpt = new EllipticKeyPoint(); MBFImage outImg = new MBFImage(img.clone(), img.clone(), img.clone()); // for (InterestPointData d : a) { // //// InterestPointData d = new InterestPointData(); //// d.x = 102; //// d.y = 396; // logger.info("Keypoint at: " + d.x + ", " + d.y); // kpt.si = si; // kpt.centre = new Pixel(d.x, d.y); // kpt.size = 2 * 3 * kpt.si; // // boolean converge = adapt.calcAffineAdaptation(img, kpt); // if(converge) // { // outImg.drawShape(new // Ellipse(kpt.centre.x,kpt.centre.y,kpt.axes.getX(),kpt.axes.getY(),kpt.phi), RGBColour.BLUE); // outImg.drawPoint(kpt.centre, RGBColour.RED,3); // } // // // // logger.info("... converged: "+ converge); // } AffineAdaption adapt = new AffineAdaption(ipd, new IPDSelectionMode.Count(100)); adapt.findInterestPoints(img); InterestPointVisualiser<Float[], MBFImage> ipv = InterestPointVisualiser.visualiseInterestPoints(outImg, adapt.points); DisplayUtilities.display(ipv.drawPatches(RGBColour.BLUE, RGBColour.RED)); }
/** * Test that the windowed histogram produced with {@link HistogramAnalyser} matches the one * produced with {@link BinnedWindowedExtractor}. */ @Test public void testWindowedHistogram() { final Rectangle roi = new Rectangle(50, 10, 100, 100); final Histogram hist1 = HistogramAnalyser.getHistogram(image.extractROI(roi), analyser.nbins); final Histogram hist2 = analyser.computeHistogram(roi); assertArrayEquals(hist1.values, hist2.values, 0.0001); }
/** * Extract a rectangular image patch centered on the feature with the same primary orientation and * a given scale factor. * * @param image the image to extract from * @param sf the scale factor * @return a rectangular image patch */ public FImage extractEllipsePatch(FImage image, double sf) { double[] data = getEllipseBoundingRectsData(sf); double height = data[1], width = data[0], ori = data[2]; int sx = (int) Math.rint(width); int sy = (int) Math.rint(height); FImage patch = new FImage(sx, sy); // extract pixels for (int y = 0; y < sy; y++) { for (int x = 0; x < sx; x++) { double xbar = x - sx / 2.0; double ybar = y - sy / 2.0; double xx = (xbar * Math.cos(ori) - ybar * Math.sin(ori)) + mx; double yy = (xbar * Math.sin(ori) + ybar * Math.cos(ori)) + my; patch.setPixel(x, y, image.getPixelInterp(xx, yy)); } } return patch; }
/** * Testing * * @param args * @throws IOException */ public static void main(String[] args) throws IOException { FImage image = ImageUtilities.readF(new File("/Users/jsh2/Desktop/image.png")); FImage template = image.extractROI(100, 100, 100, 100); image.fill(0f); image.drawImage(template, 100, 100); TemplateMatcher matcher = new TemplateMatcher(template, Mode.CORRELATION); matcher.setSearchBounds(new Rectangle(100, 100, 200, 200)); image.analyseWith(matcher); DisplayUtilities.display(matcher.responseMap.normalise()); MBFImage cimg = image.toRGB(); for (FValuePixel p : matcher.getBestResponses(10)) { System.out.println(p); cimg.drawPoint(p, RGBColour.RED, 1); } cimg.drawShape(matcher.getSearchBounds(), RGBColour.BLUE); cimg.drawShape(new Rectangle(100, 100, 100, 100), RGBColour.GREEN); DisplayUtilities.display(cimg); }
/** * Setup tests * * @throws IOException */ @Before public void setup() throws IOException { image = ImageUtilities.readF(OpenIMAJ.getLogoAsStream()); analyser = new BinnedWindowedExtractor(64); image.analyseWith(analyser); }
/** * Setup the test data * * @throws IOException */ @Before public void setup() throws IOException { image = ImageUtilities.readF(getClass().getResourceAsStream("/org/openimaj/image/data/bird.png")); template = image.extractROI(100, 100, 100, 100); }
@Override public FImage prepareTemplate(FImage template) { return template.process(new MeanCenter()); }
/* * Selects diffrentiation scale */ AbstractStructureTensorIPD selDifferentiationScale( FImage img, AbstractStructureTensorIPD ipdToUse, float si, Pixel c) { AbstractStructureTensorIPD best = null; float s = 0.5f; float sigma_prev = 0, sigma; FImage L; double qMax = 0; L = img.clone(); AbstractStructureTensorIPD ipd = ipdToUse.clone(); while (s <= 0.751) { Matrix M; float sd = s * si; // Smooth previous smoothed image L sigma = (float) Math.sqrt(Math.pow(sd, 2) - Math.pow(sigma_prev, 2)); L.processInplace(new FGaussianConvolve(sigma, 3)); sigma_prev = sd; // X and Y derivatives ipd.setDetectionScale(sd); ipd.setIntegrationScale(si); ipd.setImageBlurred(true); ipd.findInterestPoints(L); // FImage Lx = L.process(new FConvolution(DX_KERNEL.multiply(sd))); // FImage Ly = L.process(new FConvolution(DY_KERNEL.multiply(sd))); // // FGaussianConvolve gauss = new FGaussianConvolve(si, 3); // // FImage Lxm2 = Lx.multiply(Lx); // dx2 = Lxm2.process(gauss); // // FImage Lym2 = Ly.multiply(Ly); // dy2 = Lym2.process(gauss); // // FImage Lxmy = Lx.multiply(Ly); // dxy = Lxmy.process(gauss); M = calcSecondMomentMatrix(ipd, c.x, c.y); // calc eigenvalues // EigenvalueDecomposition meig = M.eig(); EigenValueVectorPair meig = MatrixUtils.symmetricEig2x2(M); Matrix eval = meig.getValues(); double eval1 = Math.abs(eval.get(0, 0)); double eval2 = Math.abs(eval.get(1, 1)); double q = Math.min(eval1, eval2) / Math.max(eval1, eval2); if (q >= qMax) { qMax = q; best = ipd.clone(); } s += 0.05; } return best; }
/* * Performs affine adaptation */ boolean calcAffineAdaptation( final FImage fimage, EllipticInterestPointData kpt, AbstractStructureTensorIPD ipd) { // DisplayUtilities.createNamedWindow("warp", "Warped Image ROI",true); Matrix transf = new Matrix(2, 3); // Transformation matrix Point2dImpl c = new Point2dImpl(); // Transformed point Point2dImpl p = new Point2dImpl(); // Image point Matrix U = Matrix.identity(2, 2); // Normalization matrix Matrix Mk = U.copy(); FImage img_roi, warpedImg = new FImage(1, 1); float Qinv = 1, q, si = kpt.scale; // sd = 0.75f * si; float kptSize = 2 * 3 * kpt.scale; boolean divergence = false, convergence = false; int i = 0; // Coordinates in image int py = (int) kpt.y; int px = (int) kpt.x; // Roi coordinates int roix, roiy; // Coordinates in U-trasformation int cx = px; int cy = py; int cxPr = cx; int cyPr = cy; float radius = kptSize / 2 * 1.4f; float half_width, half_height; Rectangle roi; // Affine adaptation while (i <= 10 && !divergence && !convergence) { // Transformation matrix MatrixUtils.zero(transf); transf.setMatrix(0, 1, 0, 1, U); kpt.setTransform(U); Rectangle boundingBox = new Rectangle(); double ac_b2 = U.det(); boundingBox.width = (float) Math.ceil(U.get(1, 1) / ac_b2 * 3 * si * 1.4); boundingBox.height = (float) Math.ceil(U.get(0, 0) / ac_b2 * 3 * si * 1.4); // Create window around interest point half_width = Math.min((float) Math.min(fimage.width - px - 1, px), boundingBox.width); half_height = Math.min((float) Math.min(fimage.height - py - 1, py), boundingBox.height); if (half_width <= 0 || half_height <= 0) return divergence; roix = Math.max(px - (int) boundingBox.width, 0); roiy = Math.max(py - (int) boundingBox.height, 0); roi = new Rectangle(roix, roiy, px - roix + half_width + 1, py - roiy + half_height + 1); // create ROI img_roi = fimage.extractROI(roi); // Point within the ROI p.x = px - roix; p.y = py - roiy; // Find coordinates of square's angles to find size of warped ellipse's bounding box float u00 = (float) U.get(0, 0); float u01 = (float) U.get(0, 1); float u10 = (float) U.get(1, 0); float u11 = (float) U.get(1, 1); float minx = u01 * img_roi.height < 0 ? u01 * img_roi.height : 0; float miny = u10 * img_roi.width < 0 ? u10 * img_roi.width : 0; float maxx = (u00 * img_roi.width > u00 * img_roi.width + u01 * img_roi.height ? u00 * img_roi.width : u00 * img_roi.width + u01 * img_roi.height) - minx; float maxy = (u11 * img_roi.width > u10 * img_roi.width + u11 * img_roi.height ? u11 * img_roi.height : u10 * img_roi.width + u11 * img_roi.height) - miny; // Shift transf.set(0, 2, -minx); transf.set(1, 2, -miny); if (maxx >= 2 * radius + 1 && maxy >= 2 * radius + 1) { // Size of normalized window must be 2*radius // Transformation FImage warpedImgRoi; FProjectionProcessor proc = new FProjectionProcessor(); proc.setMatrix(transf); img_roi.accumulateWith(proc); warpedImgRoi = proc.performProjection(0, (int) maxx, 0, (int) maxy, null); // DisplayUtilities.displayName(warpedImgRoi.clone().normalise(), "warp"); // Point in U-Normalized coordinates c = p.transform(U); cx = (int) (c.x - minx); cy = (int) (c.y - miny); if (warpedImgRoi.height > 2 * radius + 1 && warpedImgRoi.width > 2 * radius + 1) { // Cut around normalized patch roix = (int) Math.max(cx - Math.ceil(radius), 0.0); roiy = (int) Math.max(cy - Math.ceil(radius), 0.0); roi = new Rectangle( roix, roiy, cx - roix + (float) Math.min(Math.ceil(radius), warpedImgRoi.width - cx - 1) + 1, cy - roiy + (float) Math.min(Math.ceil(radius), warpedImgRoi.height - cy - 1) + 1); warpedImg = warpedImgRoi.extractROI(roi); // Coordinates in cutted ROI cx = cx - roix; cy = cy - roiy; } else { warpedImg.internalAssign(warpedImgRoi); } if (logger.getLevel() == Level.DEBUG) { displayCurrentPatch( img_roi.clone().normalise(), p.x, p.y, warpedImg.clone().normalise(), cx, cy, U, si * 3); } // Integration Scale selection si = selIntegrationScale(warpedImg, si, new Pixel(cx, cy)); // Differentation scale selection if (fastDifferentiationScale) { ipd = selDifferentiationScaleFast(warpedImg, ipd, si, new Pixel(cx, cy)); } else { ipd = selDifferentiationScale(warpedImg, ipd, si, new Pixel(cx, cy)); } if (ipd.maxima.size() == 0) { divergence = true; continue; } // Spatial Localization cxPr = cx; // Previous iteration point in normalized window cyPr = cy; // // float cornMax = 0; // for (int j = 0; j < 3; j++) // { // for (int t = 0; t < 3; t++) // { // float dx2 = Lxm2smooth.pixels[cyPr - 1 + j][cxPr - 1 + t]; // float dy2 = Lym2smooth.pixels[cyPr - 1 + j][cxPr - 1 + t]; // float dxy = Lxmysmooth.pixels[cyPr - 1 + j][cxPr - 1 + t]; // float det = dx2 * dy2 - dxy * dxy; // float tr = dx2 + dy2; // float cornerness = (float) (det - (0.04 * Math.pow(tr, 2))); // // if (cornerness > cornMax) { // cornMax = cornerness; // cx = cxPr - 1 + t; // cy = cyPr - 1 + j; // } // } // } FValuePixel max = ipd.findMaximum(new Rectangle(cxPr - 1, cyPr - 1, 3, 3)); cx = max.x; cy = max.y; // Transform point in image coordinates p.x = px; p.y = py; // Displacement vector c.x = cx - cxPr; c.y = cy - cyPr; // New interest point location in image p.translate(c.transform(U.inverse())); px = (int) p.x; py = (int) p.y; q = calcSecondMomentSqrt(ipd, new Pixel(cx, cy), Mk); float ratio = 1 - q; // if ratio == 1 means q == 0 and one axes equals to 0 if (!Float.isNaN(ratio) && ratio != 1) { // Update U matrix U = U.times(Mk); Matrix uVal, uV; // EigenvalueDecomposition ueig = U.eig(); EigenValueVectorPair ueig = MatrixUtils.symmetricEig2x2(U); uVal = ueig.getValues(); uV = ueig.getVectors(); Qinv = normMaxEval(U, uVal, uV); // Keypoint doesn't converge if (Qinv >= 6) { logger.debug("QInverse too large, feature too edge like, affine divergence!"); divergence = true; } else if (ratio <= 0.05) { // Keypoint converges convergence = true; // Set transformation matrix MatrixUtils.zero(transf); transf.setMatrix(0, 1, 0, 1, U); // The order here matters, setTransform uses the x and y to calculate a new ellipse kpt.x = px; kpt.y = py; kpt.scale = si; kpt.setTransform(U); kpt.score = max.value; // ax1 = (float) (1 / Math.abs(uVal.get(1, 1)) * 3 * si); // ax2 = (float) (1 / Math.abs(uVal.get(0, 0)) * 3 * si); // phi = Math.atan(uV.get(1, 1) / uV.get(0, 1)); // kpt.axes = new Point2dImpl(ax1, ax2); // kpt.phi = phi; // kpt.centre = new Pixel(px, py); // kpt.si = si; // kpt.size = 2 * 3 * si; } else { radius = (float) (3 * si * 1.4); } } else { logger.debug("QRatio was close to 0, affine divergence!"); divergence = true; } } else { logger.debug("Window size has grown too fast, scale divergence!"); divergence = true; } ++i; } if (!divergence && !convergence) { logger.debug("Reached max iterations!"); } return convergence; }
@Override public void findInterestPoints(FImage image) { findInterestPoints(image, image.getBounds()); }