Ejemplo n.º 1
0
  /**
   * The primary method in charge of learning. Adapts the permanence values of the synapses based on
   * the input vector, and the chosen columns after inhibition round. Permanence values are
   * increased for synapses connected to input bits that are turned on, and decreased for synapses
   * connected to inputs bits that are turned off.
   *
   * @param c the {@link Connections} (spatial pooler memory)
   * @param inputVector a integer array that comprises the input to the spatial pooler. There exists
   *     an entry in the array for every input bit.
   * @param activeColumns an array containing the indices of the columns that survived inhibition.
   */
  public void adaptSynapses(Connections c, int[] inputVector, int[] activeColumns) {
    int[] inputIndices = ArrayUtils.where(inputVector, ArrayUtils.INT_GREATER_THAN_0);

    double[] permChanges = new double[c.getNumInputs()];
    Arrays.fill(permChanges, -1 * c.getSynPermInactiveDec());
    ArrayUtils.setIndexesTo(permChanges, inputIndices, c.getSynPermActiveInc());
    for (int i = 0; i < activeColumns.length; i++) {
      Pool pool = c.getPotentialPools().get(activeColumns[i]);
      double[] perm = pool.getDensePermanences(c);
      int[] indexes = pool.getSparsePotential();
      ArrayUtils.raiseValuesBy(permChanges, perm);
      Column col = c.getColumn(activeColumns[i]);
      updatePermanencesForColumn(c, perm, col, indexes, true);
    }
  }
Ejemplo n.º 2
0
  /**
   * This method increases the permanence values of synapses of columns whose activity level has
   * been too low. Such columns are identified by having an overlap duty cycle that drops too much
   * below those of their peers. The permanence values for such columns are increased.
   *
   * @param c
   */
  public void bumpUpWeakColumns(final Connections c) {
    int[] weakColumns =
        ArrayUtils.where(
            c.getMemory().get1DIndexes(),
            new Condition.Adapter<Integer>() {
              @Override
              public boolean eval(int i) {
                return c.getOverlapDutyCycles()[i] < c.getMinOverlapDutyCycles()[i];
              }
            });

    for (int i = 0; i < weakColumns.length; i++) {
      Pool pool = c.getPotentialPools().get(weakColumns[i]);
      double[] perm = pool.getSparsePermanences();
      ArrayUtils.raiseValuesBy(c.getSynPermBelowStimulusInc(), perm);
      int[] indexes = pool.getSparsePotential();
      Column col = c.getColumn(weakColumns[i]);
      updatePermanencesForColumnSparse(c, perm, col, indexes, true);
    }
  }
Ejemplo n.º 3
0
  /**
   * Step two of pooler initialization kept separate from initialization of static members so that
   * they may be set at a different point in the initialization (as sometimes needed by tests).
   *
   * <p>This step prepares the proximal dendritic synapse pools with their initial permanence values
   * and connected inputs.
   *
   * @param c the {@link Connections} memory
   */
  public void connectAndConfigureInputs(Connections c) {
    // Initialize the set of permanence values for each column. Ensure that
    // each column is connected to enough input bits to allow it to be
    // activated.
    int numColumns = c.getNumColumns();
    for (int i = 0; i < numColumns; i++) {
      int[] potential = mapPotential(c, i, true);
      Column column = c.getColumn(i);
      c.getPotentialPools().set(i, column.createPotentialPool(c, potential));
      double[] perm = initPermanence(c, potential, i, c.getInitConnectedPct());
      updatePermanencesForColumn(c, perm, column, potential, true);
    }

    // The inhibition radius determines the size of a column's local
    // neighborhood.  A cortical column must overcome the overlap score of
    // columns in its neighborhood in order to become active. This radius is
    // updated every learning round. It grows and shrinks with the average
    // number of connected synapses per column.
    updateInhibitionRadius(c);
  }