Ejemplo n.º 1
0
  @Test
  public void testNoOpUpdater() {
    Random r = new Random(12345L);
    double lr = 0.5;

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.NONE)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);

    for (int i = 0; i < weightGradient.length(); i++) weightGradient.putScalar(i, r.nextDouble());
    for (int i = 0; i < biasGradient.length(); i++) biasGradient.putScalar(i, r.nextDouble());

    gradient.gradientForVariable().put(DefaultParamInitializer.WEIGHT_KEY, weightGradient);
    gradient.gradientForVariable().put(DefaultParamInitializer.BIAS_KEY, biasGradient);

    updater.update(layer, gradient, -1, 1);

    INDArray weightGradActual = gradient.getGradientFor(DefaultParamInitializer.WEIGHT_KEY);
    INDArray biasGradActual = gradient.getGradientFor(DefaultParamInitializer.BIAS_KEY);

    assertEquals(weightGradient, weightGradActual);
    assertEquals(biasGradient, biasGradActual);
  }
Ejemplo n.º 2
0
  @Test
  public void testSGDUpdater() {
    double lr = 0.05;

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.SGD)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);

    updater.update(layer, gradient, -1, 1);

    Gradient gradientDup = new DefaultGradient();
    gradientDup.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, weightGradient.dup());
    gradientDup.setGradientFor(DefaultParamInitializer.BIAS_KEY, biasGradient.dup());

    for (Map.Entry<String, INDArray> entry : gradientDup.gradientForVariable().entrySet()) {
      val = entry.getValue();
      gradExpected = val.mul(lr);
      assertEquals(gradExpected, gradient.getGradientFor(entry.getKey()));
    }
    assertEquals(lr, layer.conf().getLayer().getLearningRate(), 1e-4);
  }
Ejemplo n.º 3
0
  @Test
  public void testAdamUpdater() {
    INDArray m, v;
    double lr = 0.01;
    int iteration = 0;
    double beta1 = 0.8;
    double beta2 = 0.888;

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .iterations(iteration)
            .adamMeanDecay(beta1)
            .adamVarDecay(beta2)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.ADAM)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);
    int updaterStateSize = updater.stateSizeForLayer(layer);
    INDArray updaterState = Nd4j.create(1, updaterStateSize);
    updater.setStateViewArray(layer, updaterState, true);

    updater.update(layer, gradient, iteration, 1);

    double beta1t = FastMath.pow(beta1, iteration);
    double beta2t = FastMath.pow(beta2, iteration);
    double alphat = lr * FastMath.sqrt(1 - beta2t) / (1 - beta1t);
    if (Double.isNaN(alphat) || alphat == 0.0) alphat = epsilon;

    Gradient gradientDup = new DefaultGradient();
    gradientDup.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, weightGradient);
    gradientDup.setGradientFor(DefaultParamInitializer.BIAS_KEY, biasGradient);

    for (Map.Entry<String, INDArray> entry : gradientDup.gradientForVariable().entrySet()) {
      val = entry.getValue();
      m = Nd4j.zeros(val.shape());
      v = Nd4j.zeros(val.shape());

      m.muli(beta1).addi(val.mul(1.0 - beta1));
      v.muli(beta2).addi(val.mul(val).mul(1.0 - beta2));
      gradExpected = m.mul(alphat).divi(Transforms.sqrt(v).addi(epsilon));
      if (!gradExpected.equals(gradient.getGradientFor(entry.getKey()))) {
        System.out.println(Arrays.toString(gradExpected.dup().data().asFloat()));
        System.out.println(
            Arrays.toString(gradient.getGradientFor(entry.getKey()).dup().data().asFloat()));
      }
      assertEquals(gradExpected, gradient.getGradientFor(entry.getKey()));
    }

    assertEquals(beta1, layer.conf().getLayer().getAdamMeanDecay(), 1e-4);
    assertEquals(beta2, layer.conf().getLayer().getAdamVarDecay(), 1e-4);
  }
Ejemplo n.º 4
0
  @Test
  public void testSetGetUpdater() {

    Nd4j.getRandom().setSeed(12345L);
    double lr = 0.03;

    int nIn = 4;
    int nOut = 8;

    MultiLayerConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .momentum(0.6)
            .list()
            .layer(
                0,
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(5)
                    .updater(org.deeplearning4j.nn.conf.Updater.SGD)
                    .build())
            .layer(
                1,
                new DenseLayer.Builder()
                    .nIn(5)
                    .nOut(6)
                    .updater(org.deeplearning4j.nn.conf.Updater.NONE)
                    .build())
            .layer(
                2,
                new DenseLayer.Builder()
                    .nIn(6)
                    .nOut(7)
                    .updater(org.deeplearning4j.nn.conf.Updater.ADAGRAD)
                    .build())
            .layer(
                3,
                new OutputLayer.Builder()
                    .nIn(7)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.NESTEROVS)
                    .build())
            .backprop(true)
            .pretrain(false)
            .build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();
    net.fit(Nd4j.rand(5, nIn), Nd4j.rand(5, nOut)); // Fit, to initialize optimizer/updater

    Updater updater = net.getUpdater();
    assertTrue(updater instanceof MultiLayerUpdater);

    Updater newUpdater = UpdaterCreator.getUpdater(net);
    net.setUpdater(newUpdater);
    assertTrue(newUpdater == net.getUpdater()); // Should be identical object
  }
Ejemplo n.º 5
0
  @Test
  public void testSetGetUpdater2() {
    // Same as above test, except that we are doing setUpdater on a new network
    Nd4j.getRandom().setSeed(12345L);
    double lr = 0.03;
    int nIn = 4;
    int nOut = 8;

    MultiLayerConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .momentum(0.6)
            .list()
            .layer(
                0,
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(5)
                    .updater(org.deeplearning4j.nn.conf.Updater.SGD)
                    .build())
            .layer(
                1,
                new DenseLayer.Builder()
                    .nIn(5)
                    .nOut(6)
                    .updater(org.deeplearning4j.nn.conf.Updater.NONE)
                    .build())
            .layer(
                2,
                new DenseLayer.Builder()
                    .nIn(6)
                    .nOut(7)
                    .updater(org.deeplearning4j.nn.conf.Updater.ADAGRAD)
                    .build())
            .layer(
                3,
                new OutputLayer.Builder()
                    .nIn(7)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.NESTEROVS)
                    .build())
            .backprop(true)
            .pretrain(false)
            .build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();

    Updater newUpdater = UpdaterCreator.getUpdater(net);
    net.setUpdater(newUpdater);
    assertTrue(newUpdater == net.getUpdater()); // Should be identical object
  }
Ejemplo n.º 6
0
  @Test
  public void testRMSPropUpdater() {
    double lr = 0.01;
    double rmsDecay = 0.25;
    Map<String, INDArray> lastG = new HashMap<>();

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .rmsDecay(rmsDecay)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.RMSPROP)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);
    int updaterStateSize = updater.stateSizeForLayer(layer);
    INDArray updaterState = Nd4j.create(1, updaterStateSize);
    updater.setStateViewArray(layer, updaterState, true);

    updater.update(layer, gradient, -1, 1);

    Gradient gradientDup = new DefaultGradient();
    gradientDup.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, weightGradient.dup());
    gradientDup.setGradientFor(DefaultParamInitializer.BIAS_KEY, biasGradient.dup());

    for (Map.Entry<String, INDArray> entry : gradientDup.gradientForVariable().entrySet()) {
      key = entry.getKey();
      val = entry.getValue();
      INDArray lastGTmp = lastG.get(key);

      if (lastGTmp == null) lastGTmp = Nd4j.zeros(val.shape());

      lastGTmp.muli(rmsDecay).addi(val.mul(val).muli(1 - rmsDecay));
      gradExpected = val.mul(lr).div(Transforms.sqrt(lastGTmp.add(Nd4j.EPS_THRESHOLD)));

      assertEquals(gradExpected, gradient.getGradientFor(entry.getKey()));
      lastG.put(key, lastGTmp);
    }
    assertEquals(rmsDecay, layer.conf().getLayer().getRmsDecay(), 1e-4);
  }
Ejemplo n.º 7
0
  @Test
  public void testNestorovsUpdater() {
    double lr = 1e-2;
    double mu = 0.6;
    INDArray v, vPrev;

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .momentum(mu)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.NESTEROVS)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);
    int updaterStateSize = updater.stateSizeForLayer(layer);
    INDArray updaterState = Nd4j.create(1, updaterStateSize);
    updater.setStateViewArray(layer, updaterState, true);

    updater.update(layer, gradient, -1, 1);

    Gradient gradientDup = new DefaultGradient();
    gradientDup.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, weightGradient.dup());
    gradientDup.setGradientFor(DefaultParamInitializer.BIAS_KEY, biasGradient.dup());

    for (Map.Entry<String, INDArray> entry : gradientDup.gradientForVariable().entrySet()) {
      val = entry.getValue();
      v = Nd4j.zeros(val.shape());
      vPrev = v;
      v = vPrev.mul(mu).subi(val.mul(lr));
      gradExpected = vPrev.muli(mu).addi(v.mul(-mu - 1));

      assertEquals(gradExpected, gradient.getGradientFor(entry.getKey()));
    }

    assertEquals(mu, layer.conf().getLayer().getMomentum(), 1e-4);
  }
Ejemplo n.º 8
0
  @Test
  public void testAdaGradUpdater() {
    double lr = 1e-2;

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.ADAGRAD)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);
    int updaterStateSize = updater.stateSizeForLayer(layer);
    INDArray updaterState = Nd4j.create(1, updaterStateSize);
    updater.setStateViewArray(layer, updaterState, true);

    updater.update(layer, gradient, -1, 1);

    Gradient gradientDup = new DefaultGradient();
    gradientDup.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, weightGradient);
    gradientDup.setGradientFor(DefaultParamInitializer.BIAS_KEY, biasGradient);

    for (Map.Entry<String, INDArray> entry : gradientDup.gradientForVariable().entrySet()) {
      val = entry.getValue();
      gradExpected = Transforms.sqrt(val.mul(val).add(epsilon)).rdiv(lr).mul(val);
      assertEquals(gradExpected, gradient.getGradientFor(entry.getKey()));
    }
    assertEquals(lr, layer.conf().getLayer().getLearningRate(), 1e-4);
  }
Ejemplo n.º 9
0
  @Test
  public void testAdaDeltaUpdate() {
    INDArray dxSquared;
    Map<String, INDArray> msg = new HashMap<>();
    Map<String, INDArray> msdx = new HashMap<>();

    double rho = 0.85;

    NeuralNetConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .rho(rho)
            .layer(
                new DenseLayer.Builder()
                    .nIn(nIn)
                    .nOut(nOut)
                    .updater(org.deeplearning4j.nn.conf.Updater.ADADELTA)
                    .build())
            .build();

    int numParams = LayerFactories.getFactory(conf).initializer().numParams(conf, true);
    INDArray params = Nd4j.create(1, numParams);
    Layer layer = LayerFactories.getFactory(conf).create(conf, null, 0, params, true);
    Updater updater = UpdaterCreator.getUpdater(layer);
    int updaterStateSize = updater.stateSizeForLayer(layer);
    INDArray updaterState = Nd4j.create(1, updaterStateSize);
    updater.setStateViewArray(layer, updaterState, true);

    Gradient gradientDup = new DefaultGradient();
    gradientDup.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, weightGradient.dup());
    gradientDup.setGradientFor(DefaultParamInitializer.BIAS_KEY, biasGradient.dup());

    for (int i = 0; i < 2; i++) {
      updater.update(layer, gradient, i, 1);

      // calculations for one iteration / update

      for (Map.Entry<String, INDArray> entry : gradientDup.gradientForVariable().entrySet()) {
        key = entry.getKey();
        val = entry.getValue();
        INDArray msgTmp = msg.get(key);
        INDArray msdxTmp = msdx.get(key);

        if (msgTmp == null) {
          msgTmp = Nd4j.zeros(val.shape());
          msdxTmp = Nd4j.zeros(val.shape());
        }

        msgTmp.muli(rho);
        msgTmp.addi(1 - rho).muli(val.mul(val));

        gradExpected =
            Transforms.sqrt(msdxTmp.add(Nd4j.EPS_THRESHOLD))
                .divi(Transforms.sqrt(msgTmp.add(Nd4j.EPS_THRESHOLD)))
                .muli(val);
        gradientDup.setGradientFor(key, gradExpected);
        assertEquals(gradExpected, gradient.getGradientFor(entry.getKey()));

        msdxTmp.muli(rho);
        dxSquared = gradExpected.mul(gradExpected);
        msdxTmp.addi(dxSquared.muli(1 - rho));

        msg.put(key, msgTmp);
        msdx.put(key, msdxTmp);
      }
      assertEquals(rho, layer.conf().getLayer().getRho(), 1e-4);
    }
  }
Ejemplo n.º 10
0
  @Test
  public void testMultiLayerUpdater() throws Exception {
    Nd4j.getRandom().setSeed(12345L);
    double lr = 0.03;

    MultiLayerConfiguration conf =
        new NeuralNetConfiguration.Builder()
            .learningRate(lr)
            .momentum(0.6)
            .list()
            .layer(
                0,
                new DenseLayer.Builder()
                    .nIn(4)
                    .nOut(5)
                    .updater(org.deeplearning4j.nn.conf.Updater.SGD)
                    .build())
            .layer(
                1,
                new DenseLayer.Builder()
                    .nIn(5)
                    .nOut(6)
                    .updater(org.deeplearning4j.nn.conf.Updater.NONE)
                    .build())
            .layer(
                2,
                new DenseLayer.Builder()
                    .nIn(6)
                    .nOut(7)
                    .updater(org.deeplearning4j.nn.conf.Updater.ADAGRAD)
                    .build())
            .layer(
                3,
                new DenseLayer.Builder()
                    .nIn(7)
                    .nOut(8)
                    .updater(org.deeplearning4j.nn.conf.Updater.NESTEROVS)
                    .build())
            .build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();

    Updater updater = UpdaterCreator.getUpdater(net);
    assertNotNull(updater);
    assertTrue(updater.getClass() == MultiLayerUpdater.class);

    Field f = MultiLayerUpdater.class.getDeclaredField("layerUpdaters");
    f.setAccessible(true);
    Updater[] updaters = (Updater[]) f.get(updater);
    assertNotNull(updaters);
    assertTrue(updaters.length == net.getnLayers());
    assertTrue(updaters[0] instanceof SgdUpdater);
    assertTrue(updaters[1] instanceof NoOpUpdater);
    assertTrue(updaters[2] instanceof AdaGradUpdater);
    assertTrue(updaters[3] instanceof NesterovsUpdater);

    Updater[] uArr = new Updater[4];
    uArr[0] = new SgdUpdater();
    uArr[1] = new NoOpUpdater();
    uArr[2] = new AdaGradUpdater();
    int updaterStateSize = uArr[2].stateSizeForLayer(net.getLayer(2));
    INDArray updaterState = Nd4j.create(1, updaterStateSize);
    uArr[2].setStateViewArray(net.getLayer(2), updaterState, true);

    uArr[3] = new NesterovsUpdater();
    updaterStateSize = uArr[3].stateSizeForLayer(net.getLayer(3));
    updaterState = Nd4j.create(1, updaterStateSize);
    uArr[3].setStateViewArray(net.getLayer(3), updaterState, true);

    int[] nIns = {4, 5, 6, 7};
    int[] nOuts = {5, 6, 7, 8};

    for (int i = 0; i < 5; i++) {
      Gradient gradient = new DefaultGradient();
      Map<String, INDArray> expectedGradient = new LinkedHashMap<>();

      for (int j = 0; j < net.getnLayers(); j++) {
        // Generate test gradient:
        INDArray wGrad = Nd4j.rand(1, nIns[j] * nOuts[j]);
        INDArray bGrad = Nd4j.rand(1, nOuts[j]);

        String wKey = j + "_" + DefaultParamInitializer.WEIGHT_KEY;
        String bKey = j + "_" + DefaultParamInitializer.BIAS_KEY;

        gradient.setGradientFor(wKey, wGrad);
        gradient.setGradientFor(bKey, bGrad);

        // Also put copy of gradient through separate layer updaters to compare
        Gradient layerGradient = new DefaultGradient();
        layerGradient.setGradientFor(DefaultParamInitializer.WEIGHT_KEY, wGrad.dup());
        layerGradient.setGradientFor(DefaultParamInitializer.BIAS_KEY, bGrad.dup());

        uArr[j].update(net.getLayer(j), layerGradient, i, 1);
        for (String s : layerGradient.gradientForVariable().keySet()) {
          expectedGradient.put(j + "_" + s, layerGradient.getGradientFor(s));
        }
      }

      updater.update(net, gradient, i, 1);
      assertEquals(gradient.gradientForVariable(), expectedGradient);
    }
  }