Ejemplo n.º 1
0
 /**
  * Compute the intersection point according the steepest vector. We assume that the point is in
  * the Triangle
  *
  * @param dPoint
  * @return DPoint
  * @throws DelaunayError
  */
 public final DPoint getSteepestIntersectionPoint(DPoint dPoint) throws DelaunayError {
   if (isInside(dPoint)) {
     for (DEdge dEdge : edges) {
       if (isTopoOrientedToEdge(dEdge)) {
         DPoint pt =
             Tools.computeIntersection(
                 dEdge.getStartPoint(), dEdge.getDirectionVector(), dPoint, getSteepestVector());
         if (dEdge.contains(pt)) {
           return pt;
         }
       }
     }
   }
   return null;
 }
Ejemplo n.º 2
0
 /**
  * Compute the intersection point according to the vector opposite to the steepest vector. If dp
  * is outside the triangle, we return null.
  *
  * @param dp
  * @return The point pt of the triangle's boundary for which (dp pt) is colinear to the steepest
  *     vector.
  * @throws DelaunayError
  */
 public final DPoint getCounterSteepestIntersection(DPoint dp) throws DelaunayError {
   if (isInside(dp) || isOnAnEdge(dp)) {
     for (DEdge ed : edges) {
       if (!isTopoOrientedToEdge(ed)) {
         DPoint counterSteep = getSteepestVector();
         counterSteep.setX(-counterSteep.getX());
         counterSteep.setY(-counterSteep.getY());
         counterSteep.setZ(-counterSteep.getZ());
         DPoint pt =
             Tools.computeIntersection(
                 ed.getStartPoint(), ed.getDirectionVector(), dp, counterSteep);
         if (ed.contains(pt)) {
           return pt;
         }
       }
     }
   }
   return null;
 }