@SuppressWarnings("deprecation")
 @Before
 public void setup() throws RecommenderBuildException {
   List<Rating> rs = new ArrayList<Rating>();
   rs.add(Rating.create(1, 6, 4));
   rs.add(Rating.create(2, 6, 2));
   rs.add(Rating.create(1, 7, 3));
   rs.add(Rating.create(2, 7, 2));
   rs.add(Rating.create(3, 7, 5));
   rs.add(Rating.create(4, 7, 2));
   rs.add(Rating.create(1, 8, 3));
   rs.add(Rating.create(2, 8, 4));
   rs.add(Rating.create(3, 8, 3));
   rs.add(Rating.create(4, 8, 2));
   rs.add(Rating.create(5, 8, 3));
   rs.add(Rating.create(6, 8, 2));
   rs.add(Rating.create(1, 9, 3));
   rs.add(Rating.create(3, 9, 4));
   EventCollectionDAO dao = new EventCollectionDAO(rs);
   LenskitConfiguration config = new LenskitConfiguration();
   config.bind(EventDAO.class).to(dao);
   config.bind(ItemScorer.class).to(ItemItemScorer.class);
   // this is the default
   config.bind(UserVectorNormalizer.class).to(DefaultUserVectorNormalizer.class);
   config.bind(VectorNormalizer.class).to(IdentityVectorNormalizer.class);
   LenskitRecommenderEngine engine = LenskitRecommenderEngine.build(config);
   session = engine.createRecommender();
   recommender = session.getItemRecommender();
 }
 /**
  * Check that we score items but do not provide scores for items the user has previously rated.
  * User 5 has rated only item 8 previously.
  */
 @Test
 public void testItemScorerNoRating() {
   long[] items = {7, 8};
   ItemItemScorer scorer = session.get(ItemItemScorer.class);
   assertThat(scorer, notNullValue());
   SparseVector scores = scorer.score(5, LongArrayList.wrap(items));
   assertThat(scores, notNullValue());
   assertThat(scores.size(), equalTo(1));
   assertThat(scores.get(7), not(notANumber()));
   assertThat(scores.containsKey(8), equalTo(false));
 }
  /**
   * Check that we score items but do not provide scores for items the user has previously rated.
   * User 5 has rated only item 8 previously.
   */
  @Test
  public void testItemScorerChannels() {
    long[] items = {7, 8};
    ItemItemScorer scorer = session.get(ItemItemScorer.class);
    assertThat(scorer, notNullValue());
    SparseVector scores = scorer.score(5, LongArrayList.wrap(items));
    assertThat(scores, notNullValue());
    assertThat(scores.size(), equalTo(1));
    assertThat(scores.get(7), not(notANumber()));
    assertThat(
        scores.getChannelVector(ItemItemScorer.NEIGHBORHOOD_SIZE_SYMBOL).get(7),
        closeTo(1.0, 1.0e-5));
    assertThat(scores.containsKey(8), equalTo(false));

    long[] items2 = {7, 8, 9};
    scorer = session.get(ItemItemScorer.class);
    assertThat(scorer, notNullValue());
    scores = scorer.score(2, LongArrayList.wrap(items2));
    assertThat(
        scores.getChannelVector(ItemItemScorer.NEIGHBORHOOD_SIZE_SYMBOL).get(9),
        closeTo(3.0, 1.0e-5)); // 1, 7, 8
  }
Ejemplo n.º 4
0
  @Override
  @SuppressWarnings({"rawtypes", "unchecked"})
  public void execute() throws IOException, RecommenderBuildException {
    LenskitRecommenderEngine engine = loadEngine();

    long user = options.getLong("user");
    List<Long> items = options.get("items");

    LenskitRecommender rec = engine.createRecommender();
    RatingPredictor pred = rec.getRatingPredictor();
    if (pred == null) {
      logger.error("recommender has no rating predictor");
      throw new UnsupportedOperationException("no rating predictor");
    }

    logger.info("predicting {} items", items.size());
    Symbol pchan = getPrintChannel();
    Stopwatch timer = Stopwatch.createStarted();
    SparseVector preds = pred.predict(user, items);
    Long2ObjectMap channel = null;
    if (pchan != null) {
      for (TypedSymbol sym : preds.getChannelSymbols()) {
        if (sym.getRawSymbol().equals(pchan)) {
          channel = preds.getChannel(sym);
        }
      }
    }
    for (VectorEntry e : preds) {
      System.out.format("  %d: %.3f", e.getKey(), e.getValue());
      if (channel != null) {
        System.out.format(" (%s)", channel.get(e.getKey()));
      }
      System.out.println();
    }
    timer.stop();
    logger.info("predicted for {} items in {}", items.size(), timer);
  }
Ejemplo n.º 5
0
  public static void main(String[] args) throws RecommenderBuildException {
    LenskitConfiguration config = configureRecommender();

    logger.info("building recommender");
    Recommender rec = LenskitRecommender.build(config);

    if (args.length == 0) {
      logger.error("No users specified; provide user IDs as command line arguments");
    }

    // we automatically get a useful recommender since we have a scorer
    ItemRecommender irec = rec.getItemRecommender();
    assert irec != null;
    try {
      // Generate 5 recommendations for each user
      for (String user : args) {
        long uid;
        try {
          uid = Long.parseLong(user);
        } catch (NumberFormatException e) {
          logger.error("cannot parse user {}", user);
          continue;
        }
        logger.info("searching for recommendations for user {}", user);
        List<ScoredId> recs = irec.recommend(uid, 5);
        if (recs.isEmpty()) {
          logger.warn("no recommendations for user {}, do they exist?", uid);
        }
        System.out.format("recommendations for user %d:\n", uid);
        for (ScoredId id : recs) {
          System.out.format("  %d: %.4f\n", id.getId(), id.getScore());
        }
      }
    } catch (UnsupportedOperationException e) {
      if (e.getMessage().equals("stub implementation")) {
        System.out.println("Congratulations, the stub builds and runs!");
      }
    }
  }