/** * Fill the current buffer with bytes from the specified array from the specified offset. * * @param s source array * @param o offset from the beginning of the array * @return number of written bytes */ private int write(final byte[] s, final int o) { final Buffer bf = bm.current(); final int len = Math.min(IO.BLOCKSIZE, s.length - o); System.arraycopy(s, o, bf.data, 0, len); bf.dirty = true; return len; }
@Override public void write1(final int pre, final int off, final int v) { final int o = off + cursor(pre); final Buffer bf = bm.current(); final byte[] b = bf.data; b[o] = (byte) v; bf.dirty = true; }
/** * Reads a block from disk. * * @param b block to fetch */ private void readBlock(final int b) { if (!bm.cursor(b)) return; final Buffer bf = bm.current(); try { if (bf.dirty) writeBlock(bf); bf.pos = b; if (b >= blocks) { blocks = b + 1; } else { file.seek(bf.pos * IO.BLOCKSIZE); file.readFully(bf.data); } } catch (final IOException ex) { Util.stack(ex); } }
@Override protected void copy(final byte[] entries, final int pre, final int last) { for (int o = 0, i = pre; i < last; ++i, o += IO.NODESIZE) { final int off = cursor(i); final Buffer bf = bm.current(); System.arraycopy(entries, o, bf.data, off, IO.NODESIZE); bf.dirty = true; } }
@Override public synchronized int read4(final int pre, final int off) { final int o = off + cursor(pre); final byte[] b = bm.current().data; return ((b[o] & 0xFF) << 24) + ((b[o + 1] & 0xFF) << 16) + ((b[o + 2] & 0xFF) << 8) + (b[o + 3] & 0xFF); }
@Override public void write4(final int pre, final int off, final int v) { final int o = off + cursor(pre); final Buffer bf = bm.current(); final byte[] b = bf.data; b[o] = (byte) (v >>> 24); b[o + 1] = (byte) (v >>> 16); b[o + 2] = (byte) (v >>> 8); b[o + 3] = (byte) v; bf.dirty = true; }
@Override public synchronized void flush() throws IOException { for (final Buffer b : bm.all()) if (b.dirty) writeBlock(b); if (!dirty) return; try (final DataOutput out = new DataOutput(meta.dbfile(DATATBL + 'i'))) { out.writeNum(blocks); out.writeNum(used); // due to legacy issues, number of blocks is written several times out.writeNum(blocks); for (int a = 0; a < blocks; a++) out.writeNum(fpres[a]); out.writeNum(blocks); for (int a = 0; a < blocks; a++) out.writeNum(pages[a]); out.writeLongs(usedPages.toArray()); } dirty = false; }
/** * Convenience method for copying blocks. * * @param s source array * @param sp source position * @param d destination array * @param dp destination position * @param l source length */ private void copy(final byte[] s, final int sp, final byte[] d, final int dp, final int l) { System.arraycopy(s, sp << IO.NODEPOWER, d, dp << IO.NODEPOWER, l << IO.NODEPOWER); bm.current().dirty = true; }
@Override public void insert(final int pre, final byte[] entries) { final int nnew = entries.length; if (nnew == 0) return; dirty(); // number of records to be inserted final int nr = nnew >>> IO.NODEPOWER; int split = 0; if (used == 0) { // special case: insert new data into first block if database is empty readPage(0); usedPages.set(0); ++used; } else if (pre > 0) { // find the offset within the block where the new records will be inserted split = cursor(pre - 1) + IO.NODESIZE; } else { // all insert operations will add data after first node. // i.e., there is no "insert before first document" statement throw Util.notExpected("Insertion at beginning of populated table."); } // number of bytes occupied by old records in the current block final int nold = npre - fpre << IO.NODEPOWER; // number of bytes occupied by old records which will be moved at the end final int moved = nold - split; // special case: all entries fit in the current block Buffer bf = bm.current(); if (nold + nnew <= IO.BLOCKSIZE) { Array.move(bf.data, split, nnew, moved); System.arraycopy(entries, 0, bf.data, split, nnew); bf.dirty = true; // increment first pre-values of blocks after the last modified block for (int i = page + 1; i < used; ++i) fpres[i] += nr; // update cached variables (fpre is not changed) npre += nr; meta.size += nr; return; } // append old entries at the end of the new entries final byte[] all = new byte[nnew + moved]; System.arraycopy(entries, 0, all, 0, nnew); System.arraycopy(bf.data, split, all, nnew, moved); // fill in the current block with new entries // number of bytes which fit in the first block int nrem = IO.BLOCKSIZE - split; if (nrem > 0) { System.arraycopy(all, 0, bf.data, split, nrem); bf.dirty = true; } // number of new required blocks and remaining bytes final int req = all.length - nrem; int needed = req / IO.BLOCKSIZE; final int remain = req % IO.BLOCKSIZE; if (remain > 0) { // check if the last entries can fit in the block after the current one if (page + 1 < used) { final int o = occSpace(page + 1) << IO.NODEPOWER; if (remain <= IO.BLOCKSIZE - o) { // copy the last records readPage(page + 1); bf = bm.current(); System.arraycopy(bf.data, 0, bf.data, remain, o); System.arraycopy(all, all.length - remain, bf.data, 0, remain); bf.dirty = true; // reduce the pre value, since it will be later incremented with nr fpres[page] -= remain >>> IO.NODEPOWER; // go back to the previous block readPage(page - 1); } else { // there is not enough space in the block - allocate a new one ++needed; } } else { // this is the last block - allocate a new one ++needed; } } // number of expected blocks: existing blocks + needed block - empty blocks final int exp = blocks + needed - (blocks - used); if (exp > fpres.length) { // resize directory arrays if existing ones are too small final int ns = Math.max(fpres.length << 1, exp); fpres = Arrays.copyOf(fpres, ns); pages = Arrays.copyOf(pages, ns); } // make place for the blocks where the new entries will be written Array.move(fpres, page + 1, needed, used - page - 1); Array.move(pages, page + 1, needed, used - page - 1); // write the all remaining entries while (needed-- > 0) { freeBlock(); nrem += write(all, nrem); fpres[page] = fpres[page - 1] + IO.ENTRIES; pages[page] = (int) bm.current().pos; } // increment all fpre values after the last modified block for (int i = page + 1; i < used; ++i) fpres[i] += nr; meta.size += nr; // update cached variables fpre = fpres[page]; npre = page + 1 < used && fpres[page + 1] < meta.size ? fpres[page + 1] : meta.size; }
@Override public void delete(final int pre, final int nr) { if (nr == 0) return; dirty(); // get first block cursor(pre); // some useful variables to make code more readable int from = pre - fpre; final int last = pre + nr; // check if all entries are in current block: handle and return if (last - 1 < npre) { final Buffer bf = bm.current(); copy(bf.data, from + nr, bf.data, from, npre - last); updatePre(nr); // if whole block was deleted, remove it from the index if (npre == fpre) { // mark the block as empty usedPages.clear(pages[page]); Array.move(fpres, page + 1, -1, used - page - 1); Array.move(pages, page + 1, -1, used - page - 1); --used; readPage(page); } return; } // handle blocks whose entries are to be deleted entirely // first count them int unused = 0; while (npre < last) { if (from == 0) { ++unused; // mark the blocks as empty; range clear cannot be used because the // blocks may not be consecutive usedPages.clear(pages[page]); } setPage(page + 1); from = 0; } // if the last block is empty, clear the corresponding bit readBlock(pages[page]); final Buffer bf = bm.current(); if (npre == last) { usedPages.clear((int) bf.pos); ++unused; if (page < used - 1) readPage(page + 1); else ++page; } else { // delete entries at beginning of current (last) block copy(bf.data, last - fpre, bf.data, 0, npre - last); } // now remove them from the index if (unused > 0) { Array.move(fpres, page, -unused, used - page); Array.move(pages, page, -unused, used - page); used -= unused; page -= unused; } // update index entry for this block fpres[page] = pre; fpre = pre; updatePre(nr); }
@Override public synchronized int read1(final int pre, final int off) { final int o = off + cursor(pre); final byte[] b = bm.current().data; return b[o] & 0xFF; }