Ejemplo n.º 1
0
  /**
   * Restore the current choice point and restart execution of the LP code until either find a
   * successful branch (in which case exit with StateFlag.ACTIVE and variables bound to the correct
   * results) or exhaust all choice points (in which case exit with StateFlag.FAIL and no bound
   * results). In future tabled version could also exit with StateFlag.SUSPEND in cases whether the
   * intepreter needs to suspend to await tabled results from a parallel proof tree.
   */
  protected StateFlag run() {
    int pc = 0; // Program code counter
    int ac = 0; // Program arg code counter
    RuleClauseCode clause = null; // The clause being executed
    ChoicePointFrame choice = null;
    byte[] code;
    Object[] args;
    boolean traceOn = engine.isTraceOn();
    boolean recordDerivations = engine.getDerivationLogging();

    main:
    while (cpFrame != null) {
      // restore choice point
      if (cpFrame instanceof ChoicePointFrame) {
        choice = (ChoicePointFrame) cpFrame;
        if (!choice.hasNext()) {
          // No more choices left in this choice point
          cpFrame = choice.getLink();
          if (traceOn)
            logger.info("FAIL in clause " + choice.envFrame.clause + " choices exhausted");
          continue main;
        }

        clause = choice.nextClause();
        // Create an execution environment for the new choice of clause
        if (recordDerivations) {
          envFrame = new EnvironmentFrameWithDerivation(clause);
        } else {
          envFrame = new EnvironmentFrame(clause);
        }
        envFrame.linkTo(choice.envFrame);
        envFrame.cpc = choice.cpc;
        envFrame.cac = choice.cac;

        // Restore the choice point state
        System.arraycopy(choice.argVars, 0, argVars, 0, RuleClauseCode.MAX_ARGUMENT_VARS);
        int trailMark = choice.trailIndex;
        if (trailMark < trail.size()) {
          unwindTrail(trailMark);
        }
        pc = ac = 0;
        if (recordDerivations) {
          ((EnvironmentFrameWithDerivation) envFrame).initDerivationRecord(argVars);
        }

        if (traceOn) logger.info("ENTER " + clause + " : " + getArgTrace());

        // then fall through into the recreated execution context for the new call

      } else if (cpFrame instanceof TripleMatchFrame) {
        TripleMatchFrame tmFrame = (TripleMatchFrame) cpFrame;

        // Restore the calling context
        envFrame = tmFrame.envFrame;
        clause = envFrame.clause;
        int trailMark = tmFrame.trailIndex;
        if (trailMark < trail.size()) {
          unwindTrail(trailMark);
        }

        // Find the next choice result directly
        if (!tmFrame.nextMatch(this)) {
          // No more matches
          cpFrame = cpFrame.getLink();
          if (traceOn) logger.info("TRIPLE match (" + tmFrame.goal + ") -> FAIL");
          continue main;
        }
        if (traceOn) {
          logger.info("TRIPLE match (" + tmFrame.goal + ") -> " + getArgTrace());
          logger.info("RENTER " + clause);
        }

        pc = tmFrame.cpc;
        ac = tmFrame.cac;

        if (recordDerivations) {
          if (envFrame instanceof EnvironmentFrameWithDerivation) {
            ((EnvironmentFrameWithDerivation) envFrame).noteMatch(tmFrame.goal, pc);
          }
        }

        // then fall through to the execution context in which the the match was called

      } else if (cpFrame instanceof TopLevelTripleMatchFrame) {
        TopLevelTripleMatchFrame tmFrame = (TopLevelTripleMatchFrame) cpFrame;

        // Find the next choice result directly
        if (!tmFrame.nextMatch(this)) {
          // No more matches
          cpFrame = cpFrame.getLink();
          if (traceOn) logger.info("TRIPLE match (" + tmFrame.goal + ") -> FAIL");
          continue main;
        } else {
          // Match but this is the top level so return the triple directly
          if (traceOn) logger.info("TRIPLE match (" + tmFrame.goal + ") ->");
          return StateFlag.SATISFIED;
        }

      } else if (cpFrame instanceof ConsumerChoicePointFrame) {
        ConsumerChoicePointFrame ccp = (ConsumerChoicePointFrame) cpFrame;

        // Restore the calling context
        envFrame = ccp.envFrame;
        clause = envFrame.clause;
        if (traceOn)
          logger.info("RESTORE " + clause + ", due to tabled goal " + ccp.generator.goal);
        int trailMark = ccp.trailIndex;
        if (trailMark < trail.size()) {
          unwindTrail(trailMark);
        }

        // Find the next choice result directly
        StateFlag state = ccp.nextMatch(this);
        if (state == StateFlag.FAIL) {
          // No more matches
          cpFrame = cpFrame.getLink();
          if (traceOn) logger.info("FAIL " + clause);
          continue main;
        } else if (state == StateFlag.SUSPEND) {
          // Require other generators to cycle before resuming this one
          preserveState(ccp);
          iContext.notifyBlockedOn(ccp);
          cpFrame = cpFrame.getLink();
          if (traceOn) logger.info("SUSPEND " + clause);
          continue main;
        }

        pc = ccp.cpc;
        ac = ccp.cac;

        if (recordDerivations) {
          if (envFrame instanceof EnvironmentFrameWithDerivation) {
            ((EnvironmentFrameWithDerivation) envFrame).noteMatch(ccp.goal, pc);
          }
        }

        // then fall through to the execution context in which the the match was called

      } else {
        throw new ReasonerException(
            "Internal error in backward rule system, unrecognized choice point");
      }

      engine.incrementProfile(clause);

      interpreter:
      while (envFrame != null) {

        // Start of bytecode intepreter loop
        // Init the state variables
        pVars = envFrame.pVars;
        int yi, ai, ti;
        Node arg, constant;
        code = clause.getCode();
        args = clause.getArgs();

        while (true) {
          switch (code[pc++]) {
            case RuleClauseCode.TEST_BOUND:
              ai = code[pc++];
              if (deref(argVars[ai]).isVariable()) {
                if (traceOn) logger.info("FAIL " + clause);
                continue main;
              }
              break;

            case RuleClauseCode.TEST_UNBOUND:
              ai = code[pc++];
              if (!deref(argVars[ai]).isVariable()) {
                if (traceOn) logger.info("FAIL " + clause);
                continue main;
              }
              break;

            case RuleClauseCode.ALLOCATE:
              int envSize = code[pc++];
              envFrame.allocate(envSize);
              pVars = envFrame.pVars;
              break;

            case RuleClauseCode.GET_VARIABLE:
              yi = code[pc++];
              ai = code[pc++];
              pVars[yi] = argVars[ai];
              break;

            case RuleClauseCode.GET_TEMP:
              ti = code[pc++];
              ai = code[pc++];
              tVars[ti] = argVars[ai];
              break;

            case RuleClauseCode.GET_CONSTANT:
              ai = code[pc++];
              arg = argVars[ai];
              if (arg instanceof Node_RuleVariable) arg = ((Node_RuleVariable) arg).deref();
              constant = (Node) args[ac++];
              if (arg instanceof Node_RuleVariable) {
                bind(arg, constant);
              } else {
                if (!arg.sameValueAs(constant)) {
                  if (traceOn) logger.info("FAIL " + clause);
                  continue main;
                }
              }
              break;

            case RuleClauseCode.GET_FUNCTOR:
              Functor func = (Functor) args[ac++];
              boolean match = false;
              Node o = argVars[2];
              if (o instanceof Node_RuleVariable) o = ((Node_RuleVariable) o).deref();
              if (Functor.isFunctor(o)) {
                Functor funcArg = (Functor) o.getLiteralValue();
                if (funcArg.getName().equals(func.getName())) {
                  if (funcArg.getArgLength() == func.getArgLength()) {
                    Node[] fargs = funcArg.getArgs();
                    for (int i = 0; i < fargs.length; i++) {
                      argVars[i + 3] = fargs[i];
                    }
                    match = true;
                  }
                }
              } else if (o.isVariable()) {
                // Construct a new functor in place
                Node[] fargs = new Node[func.getArgLength()];
                Node[] templateArgs = func.getArgs();
                for (int i = 0; i < fargs.length; i++) {
                  Node template = templateArgs[i];
                  if (template.isVariable()) template = new Node_RuleVariable(null, i + 3);
                  fargs[i] = template;
                  argVars[i + 3] = template;
                }
                Node newFunc = Functor.makeFunctorNode(func.getName(), fargs);
                bind(((Node_RuleVariable) o).deref(), newFunc);
                match = true;
              }
              if (!match) {
                if (traceOn) logger.info("FAIL " + clause);
                continue main; // fail to unify functor shape
              }
              break;

            case RuleClauseCode.UNIFY_VARIABLE:
              yi = code[pc++];
              ai = code[pc++];
              if (!unify(argVars[ai], pVars[yi])) {
                if (traceOn) logger.info("FAIL " + clause);
                continue main;
              }
              break;

            case RuleClauseCode.UNIFY_TEMP:
              ti = code[pc++];
              ai = code[pc++];
              if (!unify(argVars[ai], tVars[ti])) {
                if (traceOn) logger.info("FAIL " + clause);
                continue main;
              }
              break;

            case RuleClauseCode.PUT_NEW_VARIABLE:
              yi = code[pc++];
              ai = code[pc++];
              argVars[ai] = pVars[yi] = new Node_RuleVariable(null, yi);
              break;

            case RuleClauseCode.PUT_VARIABLE:
              yi = code[pc++];
              ai = code[pc++];
              argVars[ai] = pVars[yi];
              break;

            case RuleClauseCode.PUT_DEREF_VARIABLE:
              yi = code[pc++];
              ai = code[pc++];
              argVars[ai] = deref(pVars[yi]);
              break;

            case RuleClauseCode.PUT_TEMP:
              ti = code[pc++];
              ai = code[pc++];
              argVars[ai] = tVars[ti];
              break;

            case RuleClauseCode.PUT_CONSTANT:
              ai = code[pc++];
              argVars[ai] = (Node) args[ac++];
              break;

            case RuleClauseCode.CLEAR_ARG:
              ai = code[pc++];
              argVars[ai] = new Node_RuleVariable(null, ai);
              break;

            case RuleClauseCode.MAKE_FUNCTOR:
              Functor f = (Functor) args[ac++];
              Node[] fargs = new Node[f.getArgLength()];
              System.arraycopy(argVars, 3, fargs, 0, fargs.length);
              argVars[2] = Functor.makeFunctorNode(f.getName(), fargs);
              break;

            case RuleClauseCode.LAST_CALL_PREDICATE:
              // TODO: improved implementation of last call case
            case RuleClauseCode.CALL_PREDICATE:
              List<RuleClauseCode> clauses = ((RuleClauseCodeList) args[ac++]).getList();
              // Check if this call is now grounded
              boolean groundCall =
                  isGrounded(argVars[0]) && isGrounded(argVars[1]) && isGrounded(argVars[2]);
              setupClauseCall(pc, ac, clauses, groundCall);
              setupTripleMatchCall(pc, ac);
              continue main;

            case RuleClauseCode.CALL_PREDICATE_INDEX:
              // This code path is experimental, don't yet know if it has enough
              // performance benefit to justify the cost of maintaining it.
              clauses = ((RuleClauseCodeList) args[ac++]).getList();
              // Check if we can futher index the clauses
              if (!argVars[2].isVariable()) {
                clauses =
                    engine
                        .getRuleStore()
                        .codeFor(new TriplePattern(argVars[0], argVars[1], argVars[2]));
              }
              setupClauseCall(pc, ac, clauses, false);
              setupTripleMatchCall(pc, ac);
              continue main;

            case RuleClauseCode.CALL_TRIPLE_MATCH:
              setupTripleMatchCall(pc, ac);
              continue main;

            case RuleClauseCode.CALL_TABLED:
              setupTabledCall(pc, ac);
              continue main;

            case RuleClauseCode.CALL_WILD_TABLED:
              Node predicate = deref(argVars[1]);
              if (engine.getRuleStore().isTabled(predicate)) {
                setupTabledCall(pc, ac);
              } else {
                // normal call set up
                clauses =
                    engine
                        .getRuleStore()
                        .codeFor(new TriplePattern(argVars[0], predicate, argVars[2]));
                if (clauses != null) setupClauseCall(pc, ac, clauses, false);
                setupTripleMatchCall(pc, ac);
              }
              continue main;

            case RuleClauseCode.PROCEED:
              pc = envFrame.cpc;
              ac = envFrame.cac;
              if (traceOn) logger.info("EXIT " + clause);
              if (choice != null) choice.noteSuccess();
              if (recordDerivations && envFrame.getRule() != null) {
                if (envFrame instanceof EnvironmentFrameWithDerivation) {
                  EnvironmentFrameWithDerivation efd = (EnvironmentFrameWithDerivation) envFrame;
                  Triple result = efd.getResult();
                  List<Triple> matches = efd.getMatchList();
                  BackwardRuleInfGraphI infGraph = engine.getInfGraph();
                  RuleDerivation d =
                      new RuleDerivation(envFrame.getRule(), result, matches, infGraph);
                  infGraph.logDerivation(result, d);

                  // Also want to record this result in the calling frame
                  if (envFrame.link instanceof EnvironmentFrameWithDerivation) {
                    EnvironmentFrameWithDerivation pefd =
                        (EnvironmentFrameWithDerivation) envFrame.link;
                    pefd.noteMatch(new TriplePattern(result), pc);
                  }
                }
              }
              envFrame = (EnvironmentFrame) envFrame.link;
              if (envFrame != null) {
                clause = envFrame.clause;
              }
              continue interpreter;

            case RuleClauseCode.CALL_BUILTIN:
              Builtin builtin = (Builtin) args[ac++];
              if (context == null) {
                BBRuleContext bbcontext = new BBRuleContext(engine.getInfGraph());
                bbcontext.setEnv(new LPBindingEnvironment(this));
                context = bbcontext;
              }
              context.setRule(clause.getRule());
              if (!builtin.bodyCall(argVars, code[pc++], context)) {
                if (traceOn) logger.info("FAIL " + clause + ", due to " + builtin.getName());
                continue main;
              }
              break;

            default:
              throw new ReasonerException(
                  "Internal error in backward rule system\nIllegal op code");
          }
        }
        // End of innter code loop
      }
      // End of bytecode interpreter loop, gets to here if we complete an AND chain
      return StateFlag.ACTIVE;
    }
    // Gets to here if we have run out of choice point frames
    return StateFlag.FAIL;
  }
Ejemplo n.º 2
0
 /**
  * Stop the current work. This is called if the top level results iterator has either finished or
  * the calling application has had enough.
  */
 public void close() {
   isComplete = true;
   if (cpFrame != null) cpFrame.close();
   engine.detach(this);
 }