Ejemplo n.º 1
0
 /** Returns a new (deterministic) automaton that accepts all strings. */
 public static DefaultAutomaton makeAnyString() {
   DefaultAutomaton a = new DefaultAutomaton();
   State s = new State();
   a.initial = s;
   s.accept = true;
   s.transitions.add(new Transition(Character.MIN_VALUE, Character.MAX_VALUE, s));
   a.deterministic = true;
   return a;
 }
Ejemplo n.º 2
0
 /** Minimizes the given automaton using Huffman's algorithm. */
 public static void minimizeHuffman(LinkedAutomaton a) {
   determinize(a);
   a.totalize();
   Set<State> ss = a.getStates();
   Transition[][] transitions = new Transition[ss.size()][];
   State[] states = ss.toArray(new State[ss.size()]);
   boolean[][] mark = new boolean[states.length][states.length];
   ArrayList<ArrayList<HashSet<IntPair>>> triggers = new ArrayList<ArrayList<HashSet<IntPair>>>();
   for (int n1 = 0; n1 < states.length; n1++) {
     ArrayList<HashSet<IntPair>> v = new ArrayList<HashSet<IntPair>>();
     initialize(v, states.length);
     triggers.add(v);
   }
   // initialize marks based on acceptance status and find transition arrays
   for (int n1 = 0; n1 < states.length; n1++) {
     states[n1].number = n1;
     transitions[n1] = states[n1].getSortedTransitionArray(false);
     for (int n2 = n1 + 1; n2 < states.length; n2++)
       if (states[n1].accept != states[n2].accept) mark[n1][n2] = true;
   }
   // for all pairs, see if states agree
   for (int n1 = 0; n1 < states.length; n1++)
     for (int n2 = n1 + 1; n2 < states.length; n2++)
       if (!mark[n1][n2]) {
         if (statesAgree(transitions, mark, n1, n2)) addTriggers(transitions, triggers, n1, n2);
         else markPair(mark, triggers, n1, n2);
       }
   // assign equivalence class numbers to states
   int numclasses = 0;
   for (int n = 0; n < states.length; n++) states[n].number = -1;
   for (int n1 = 0; n1 < states.length; n1++)
     if (states[n1].number == -1) {
       states[n1].number = numclasses;
       for (int n2 = n1 + 1; n2 < states.length; n2++)
         if (!mark[n1][n2]) states[n2].number = numclasses;
       numclasses++;
     }
   // make a new state for each equivalence class
   State[] newstates = new State[numclasses];
   for (int n = 0; n < numclasses; n++) newstates[n] = new State();
   // select a class representative for each class and find the new initial
   // state
   for (int n = 0; n < states.length; n++) {
     newstates[states[n].number].number = n;
     if (states[n] == a.initial) a.initial = newstates[states[n].number];
   }
   // build transitions and set acceptance
   for (int n = 0; n < numclasses; n++) {
     State s = newstates[n];
     s.accept = states[s.number].accept;
     for (Transition t : states[s.number].transitions)
       s.transitions.add(new Transition(t.min, t.max, newstates[t.to.number]));
   }
   a.removeDeadTransitions();
 }
Ejemplo n.º 3
0
 /**
  * Returns a new (deterministic) automaton that accepts a single char whose value is in the given
  * interval (including both end points).
  */
 public static DefaultAutomaton makeCharRange(char min, char max) {
   if (min == max) return makeChar(min);
   DefaultAutomaton a = new DefaultAutomaton();
   State s1 = new State();
   State s2 = new State();
   a.initial = s1;
   s2.accept = true;
   if (min <= max) s1.transitions.add(new Transition(min, max, s2));
   a.deterministic = true;
   return a;
 }
Ejemplo n.º 4
0
 /** Returns a new (deterministic) automaton that accepts a single character in the given set. */
 public static DefaultAutomaton makeCharSet(String set) {
   if (set.length() == 1) return makeChar(set.charAt(0));
   DefaultAutomaton a = new DefaultAutomaton();
   State s1 = new State();
   State s2 = new State();
   a.initial = s1;
   s2.accept = true;
   for (int i = 0; i < set.length(); i++) s1.transitions.add(new Transition(set.charAt(i), s2));
   a.deterministic = true;
   a.reduce();
   return a;
 }
Ejemplo n.º 5
0
 /** Constructs deterministic automaton that matches strings that contain the given substring. */
 public static DefaultAutomaton makeStringMatcher(String s) {
   DefaultAutomaton a = new DefaultAutomaton();
   State[] states = new State[s.length() + 1];
   states[0] = a.initial;
   for (int i = 0; i < s.length(); i++) states[i + 1] = new State();
   State f = states[s.length()];
   f.accept = true;
   f.transitions.add(new Transition(Character.MIN_VALUE, Character.MAX_VALUE, f));
   for (int i = 0; i < s.length(); i++) {
     Set<Character> done = new HashSet<Character>();
     char c = s.charAt(i);
     states[i].transitions.add(new Transition(c, states[i + 1]));
     done.add(c);
     for (int j = i; j >= 1; j--) {
       char d = s.charAt(j - 1);
       if (!done.contains(d) && s.substring(0, j - 1).equals(s.substring(i - j + 1, i))) {
         states[i].transitions.add(new Transition(d, states[j]));
         done.add(d);
       }
     }
     char[] da = new char[done.size()];
     int h = 0;
     for (char w : done) da[h++] = w;
     Arrays.sort(da);
     int from = Character.MIN_VALUE;
     int k = 0;
     while (from <= Character.MAX_VALUE) {
       while (k < da.length && da[k] == from) {
         k++;
         from++;
       }
       if (from <= Character.MAX_VALUE) {
         int to = Character.MAX_VALUE;
         if (k < da.length) {
           to = da[k] - 1;
           k++;
         }
         states[i].transitions.add(new Transition((char) from, (char) to, states[0]));
         from = to + 2;
       }
     }
   }
   a.deterministic = true;
   return a;
 }
Ejemplo n.º 6
0
 /** Minimizes the given automaton using Hopcroft's algorithm. */
 public static void minimizeHopcroft(LinkedAutomaton a) {
   determinize(a);
   Set<Transition> tr = a.initial.getTransitions();
   if (tr.size() == 1) {
     Transition t = tr.iterator().next();
     if (t.to == a.initial && t.min == Character.MIN_VALUE && t.max == Character.MAX_VALUE) return;
   }
   a.totalize();
   // make arrays for numbered states and effective alphabet
   Set<State> ss = a.getStates();
   State[] states = new State[ss.size()];
   int number = 0;
   for (State q : ss) {
     states[number] = q;
     q.number = number++;
   }
   char[] sigma = a.getStartPoints();
   // initialize data structures
   ArrayList<ArrayList<LinkedList<State>>> reverse = new ArrayList<ArrayList<LinkedList<State>>>();
   for (int q = 0; q < states.length; q++) {
     ArrayList<LinkedList<State>> v = new ArrayList<LinkedList<State>>();
     initialize(v, sigma.length);
     reverse.add(v);
   }
   boolean[][] reverse_nonempty = new boolean[states.length][sigma.length];
   ArrayList<LinkedList<State>> partition = new ArrayList<LinkedList<State>>();
   initialize(partition, states.length);
   int[] block = new int[states.length];
   StateList[][] active = new StateList[states.length][sigma.length];
   StateListNode[][] active2 = new StateListNode[states.length][sigma.length];
   LinkedList<IntPair> pending = new LinkedList<IntPair>();
   boolean[][] pending2 = new boolean[sigma.length][states.length];
   ArrayList<State> split = new ArrayList<State>();
   boolean[] split2 = new boolean[states.length];
   ArrayList<Integer> refine = new ArrayList<Integer>();
   boolean[] refine2 = new boolean[states.length];
   ArrayList<ArrayList<State>> splitblock = new ArrayList<ArrayList<State>>();
   initialize(splitblock, states.length);
   for (int q = 0; q < states.length; q++) {
     splitblock.set(q, new ArrayList<State>());
     partition.set(q, new LinkedList<State>());
     for (int x = 0; x < sigma.length; x++) {
       reverse.get(q).set(x, new LinkedList<State>());
       active[q][x] = new StateList();
     }
   }
   // find initial partition and reverse edges
   for (int q = 0; q < states.length; q++) {
     State qq = states[q];
     int j;
     if (qq.accept != null) j = 0;
     else j = 1;
     partition.get(j).add(qq);
     block[qq.number] = j;
     for (int x = 0; x < sigma.length; x++) {
       char y = sigma[x];
       State p = qq.step(y);
       reverse.get(p.number).get(x).add(qq);
       reverse_nonempty[p.number][x] = true;
     }
   }
   // initialize active sets
   for (int j = 0; j <= 1; j++)
     for (int x = 0; x < sigma.length; x++)
       for (State qq : partition.get(j))
         if (reverse_nonempty[qq.number][x]) active2[qq.number][x] = active[j][x].add(qq);
   // initialize pending
   for (int x = 0; x < sigma.length; x++) {
     int a0 = active[0][x].size;
     int a1 = active[1][x].size;
     int j;
     if (a0 <= a1) j = 0;
     else j = 1;
     pending.add(new IntPair(j, x));
     pending2[x][j] = true;
   }
   // process pending until fixed point
   int k = 2;
   while (!pending.isEmpty()) {
     IntPair ip = pending.removeFirst();
     int p = ip.n1;
     int x = ip.n2;
     pending2[x][p] = false;
     // find states that need to be split off their blocks
     for (StateListNode m = active[p][x].first; m != null; m = m.next)
       for (State s : reverse.get(m.q.number).get(x))
         if (!split2[s.number]) {
           split2[s.number] = true;
           split.add(s);
           int j = block[s.number];
           splitblock.get(j).add(s);
           if (!refine2[j]) {
             refine2[j] = true;
             refine.add(j);
           }
         }
     // refine blocks
     for (int j : refine) {
       if (splitblock.get(j).size() < partition.get(j).size()) {
         LinkedList<State> b1 = partition.get(j);
         LinkedList<State> b2 = partition.get(k);
         for (State s : splitblock.get(j)) {
           b1.remove(s);
           b2.add(s);
           block[s.number] = k;
           for (int c = 0; c < sigma.length; c++) {
             StateListNode sn = active2[s.number][c];
             if (sn != null && sn.sl == active[j][c]) {
               sn.remove();
               active2[s.number][c] = active[k][c].add(s);
             }
           }
         }
         // update pending
         for (int c = 0; c < sigma.length; c++) {
           int aj = active[j][c].size;
           int ak = active[k][c].size;
           if (!pending2[c][j] && 0 < aj && aj <= ak) {
             pending2[c][j] = true;
             pending.add(new IntPair(j, c));
           } else {
             pending2[c][k] = true;
             pending.add(new IntPair(k, c));
           }
         }
         k++;
       }
       for (State s : splitblock.get(j)) split2[s.number] = false;
       refine2[j] = false;
       splitblock.get(j).clear();
     }
     split.clear();
     refine.clear();
   }
   // make a new state for each equivalence class, set initial state
   State[] newstates = new State[k];
   for (int n = 0; n < newstates.length; n++) {
     State s = new State();
     newstates[n] = s;
     for (State q : partition.get(n)) {
       if (q == a.initial) a.initial = s;
       s.accept = q.accept;
       s.number = q.number; // select representative
       q.number = n;
     }
   }
   // build transitions and set acceptance
   for (int n = 0; n < newstates.length; n++) {
     State s = newstates[n];
     s.accept = states[s.number].accept;
     for (Transition t : states[s.number].transitions)
       s.transitions.add(new Transition(t.min, t.max, newstates[t.to.number]));
   }
   a.removeDeadTransitions();
 }