protected int NN(int nSel, double conj[][], double ejemplo[]) { double mindist, dist; int nneigh = -1; mindist = Double.POSITIVE_INFINITY; for (int i = 0; i < nSel; i++) { dist = KNN.distancia(conj[i], ejemplo); if (dist < mindist) { mindist = dist; nneigh = i; } } return nneigh; }
public void ejecutar() { int i, j, l, m; double alfai; int nClases; int claseObt; boolean marcas[]; boolean notFound; int init; int clasSel[]; int baraje[]; int pos, tmp; String instanciasIN[]; String instanciasOUT[]; long tiempo = System.currentTimeMillis(); /* Getting the number of differents classes */ nClases = 0; for (i = 0; i < clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /* Shuffle the train set */ baraje = new int[datosTrain.length]; Randomize.setSeed(semilla); for (i = 0; i < datosTrain.length; i++) baraje[i] = i; for (i = 0; i < datosTrain.length; i++) { pos = Randomize.Randint(i, datosTrain.length - 1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } /* * Inicialization of the flagged instaces vector for a posterior * elimination */ marcas = new boolean[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) marcas[i] = false; if (datosTrain.length > 0) { // marcas[baraje[0]] = true; //the first instance is included always nSel = n_p; if (nSel < nClases) nSel = nClases; } else { System.err.println("Input dataset is empty"); nSel = 0; } clasSel = new int[nClases]; System.out.print("Selecting initial neurons... "); // at least, there must be 1 neuron of each class at the beginning init = nClases; for (i = 0; i < nClases && i < datosTrain.length; i++) { pos = Randomize.Randint(0, datosTrain.length - 1); tmp = 0; while ((clasesTrain[pos] != i || marcas[pos]) && tmp < datosTrain.length) { pos = (pos + 1) % datosTrain.length; tmp++; } if (tmp < datosTrain.length) marcas[pos] = true; else init--; // clasSel[i] = i; } for (i = init; i < Math.min(nSel, datosTrain.length); i++) { tmp = 0; pos = Randomize.Randint(0, datosTrain.length - 1); while (marcas[pos]) { pos = (pos + 1) % datosTrain.length; tmp++; } // if(i<nClases){ // notFound = true; // do{ // for(j=i-1;j>=0 && notFound;j--){ // if(clasSel[j] == clasesTrain[pos]) // notFound = false; // } // if(!notFound) // pos = Randomize.Randint (0, datosTrain.length-1); // }while(!notFound); // } // clasSel[i] = clasesTrain[pos]; marcas[pos] = true; init++; } nSel = init; System.out.println("Initial neurons selected: " + nSel); /* Building of the S set from the flags */ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m = 0, l = 0; m < datosTrain.length; m++) { if (marcas[m]) { // the instance must be copied to the solution for (j = 0; j < datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } alfai = alpha; boolean change = true; /* Body of the LVQ algorithm. */ // Train the network for (int it = 0; it < T && change; it++) { change = false; alpha = alfai; for (i = 1; i < datosTrain.length; i++) { // search for the nearest neuron to training instance pos = NN(nSel, conjS, datosTrain[baraje[i]]); // nearest neuron labels correctly the class of training // instance? if (clasesS[pos] != clasesTrain[baraje[i]]) { // NO - repel // the neuron for (j = 0; j < conjS[pos].length; j++) { conjS[pos][j] = conjS[pos][j] - alpha * (datosTrain[baraje[i]][j] - conjS[pos][j]); } change = true; } else { // YES - migrate the neuron towards the input vector for (j = 0; j < conjS[pos].length; j++) { conjS[pos][j] = conjS[pos][j] + alpha * (datosTrain[baraje[i]][j] - conjS[pos][j]); } } alpha = nu * alpha; } // Shuffle again the training partition baraje = new int[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) baraje[i] = i; for (i = 0; i < datosTrain.length; i++) { pos = Randomize.Randint(i, datosTrain.length - 1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } } System.out.println( "LVQ " + relation + " " + (double) (System.currentTimeMillis() - tiempo) / 1000.0 + "s"); // Classify the train data set instanciasIN = new String[datosReferencia.length]; instanciasOUT = new String[datosReferencia.length]; for (i = 0; i < datosReferencia.length; i++) { /* Classify the instance selected in this iteration */ Attribute a = Attributes.getOutputAttribute(0); int tipo = a.getType(); claseObt = KNN.evaluacionKNN2(1, conjS, clasesS, datosReferencia[i], nClases); if (tipo != Attribute.NOMINAL) { instanciasIN[i] = new String(String.valueOf(clasesReferencia[i])); instanciasOUT[i] = new String(String.valueOf(claseObt)); } else { instanciasIN[i] = new String(a.getNominalValue(clasesReferencia[i])); instanciasOUT[i] = new String(a.getNominalValue(claseObt)); } } escribeSalida( ficheroSalida[0], instanciasIN, instanciasOUT, entradas, salida, nEntradas, relation); // Classify the test data set normalizarTest(); instanciasIN = new String[datosTest.length]; instanciasOUT = new String[datosTest.length]; for (i = 0; i < datosTest.length; i++) { /* Classify the instance selected in this iteration */ Attribute a = Attributes.getOutputAttribute(0); int tipo = a.getType(); claseObt = KNN.evaluacionKNN2(1, conjS, clasesS, datosTest[i], nClases); if (tipo != Attribute.NOMINAL) { instanciasIN[i] = new String(String.valueOf(clasesTest[i])); instanciasOUT[i] = new String(String.valueOf(claseObt)); } else { instanciasIN[i] = new String(a.getNominalValue(clasesTest[i])); instanciasOUT[i] = new String(a.getNominalValue(claseObt)); } } escribeSalida( ficheroSalida[1], instanciasIN, instanciasOUT, entradas, salida, nEntradas, relation); // Print the network to a file printNetworkToFile(ficheroSalida[2], referencia.getHeader()); }
/** * The main method of the class that includes the operations of the algorithm. It includes all the * operations that the algorithm has and finishes when it writes the output information into * files. */ public void run() { int S[]; int i, j, l, m; int nPos = 0, nNeg = 0; int posID; int nClases; int pos; int baraje[]; int tmp; double conjS[][]; int clasesS[]; int tamS = 0; int claseObt; int cont; int busq; boolean marcas[]; int nSel; double conjS2[][]; int clasesS2[]; double minDist, dist; long tiempo = System.currentTimeMillis(); /*CNN PART*/ /*Count of number of positive and negative examples*/ for (i = 0; i < clasesTrain.length; i++) { if (clasesTrain[i] == 0) nPos++; else nNeg++; } if (nPos > nNeg) { tmp = nPos; nPos = nNeg; nNeg = tmp; posID = 1; } else { posID = 0; } /*Inicialization of the candidates set*/ S = new int[datosTrain.length]; for (i = 0; i < S.length; i++) S[i] = Integer.MAX_VALUE; /*Inserting an element of mayority class*/ Randomize.setSeed(semilla); pos = Randomize.Randint(0, clasesTrain.length - 1); while (clasesTrain[pos] == posID) pos = (pos + 1) % clasesTrain.length; S[tamS] = pos; tamS++; /*Insert all subset of minority class*/ for (i = 0; i < clasesTrain.length; i++) { if (clasesTrain[i] == posID) { S[tamS] = i; tamS++; } } /*Algorithm body. We resort randomly the instances of T and compare with the rest of S. If an instance doesn´t classified correctly, it is inserted in S*/ baraje = new int[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) baraje[i] = i; for (i = 0; i < datosTrain.length; i++) { pos = Randomize.Randint(i, clasesTrain.length - 1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } for (i = 0; i < datosTrain.length; i++) { if (clasesTrain[i] != posID) { // only for mayority class instances /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j = 0; j < tamS; j++) { for (l = 0; l < datosTrain[0].length; l++) conjS[j][l] = datosTrain[S[j]][l]; clasesS[j] = clasesTrain[S[j]]; } /*Do KNN to the instance*/ claseObt = KNN.evaluacionKNN(k, conjS, clasesS, datosTrain[baraje[i]], 2); if (claseObt != clasesTrain[baraje[i]]) { // fail in the class, it is included in S Arrays.sort(S); busq = Arrays.binarySearch(S, baraje[i]); if (busq < 0) { S[tamS] = baraje[i]; tamS++; } } } } /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j = 0; j < tamS; j++) { for (l = 0; l < datosTrain[0].length; l++) conjS[j][l] = datosTrain[S[j]][l]; clasesS[j] = clasesTrain[S[j]]; } /*TOMEK LINKS PART*/ /*Inicialization of the instance flagged vector of the S set*/ marcas = new boolean[conjS.length]; for (i = 0; i < conjS.length; i++) { marcas[i] = true; } nSel = conjS.length; for (i = 0; i < conjS.length; i++) { minDist = Double.POSITIVE_INFINITY; pos = 0; for (j = 0; j < conjS.length; j++) { if (i != j) { dist = KNN.distancia(conjS[i], conjS[j]); if (dist < minDist) { minDist = dist; pos = j; } } } if (clasesS[i] != clasesS[pos]) { if (clasesS[i] != posID) { if (marcas[i] == true) { marcas[i] = false; nSel--; } } else { if (marcas[pos] == true) { marcas[pos] = false; nSel--; } } } } /*Construction of the S set from the flags*/ conjS2 = new double[nSel][conjS[0].length]; clasesS2 = new int[nSel]; for (m = 0, l = 0; m < conjS.length; m++) { if (marcas[m]) { // the instance will evaluate for (j = 0; j < conjS[0].length; j++) { conjS2[l][j] = conjS[m][j]; } clasesS2[l] = clasesS[m]; l++; } } System.out.println( "CNN_TomekLinks " + relation + " " + (double) (System.currentTimeMillis() - tiempo) / 1000.0 + "s"); OutputIS.escribeSalida( ficheroSalida[0], conjS2, clasesS2, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); }
public void ejecutar() { int i, j, l, m, o; int nClases; int claseObt; boolean marcas[]; double conjS[][]; int clasesS[]; int eleS[], eleT[]; int bestAc, aciertos; int temp[]; int pos, tmp; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i = 0; i < clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Inicialization of the flagged instance vector of the S set*/ marcas = new boolean[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) marcas[i] = false; /*Allocate memory for the random selection*/ m = (int) ((porcentaje * datosTrain.length) / 100.0); eleS = new int[m]; eleT = new int[datosTrain.length - m]; temp = new int[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) temp[i] = i; /** Random distribution of elements in each set */ Randomize.setSeed(semilla); for (i = 0; i < eleS.length; i++) { pos = Randomize.Randint(i, datosTrain.length - 1); tmp = temp[i]; temp[i] = temp[pos]; temp[pos] = tmp; eleS[i] = temp[i]; } for (i = 0; i < eleT.length; i++) { pos = Randomize.Randint(m + i, datosTrain.length - 1); tmp = temp[m + i]; temp[m + i] = temp[pos]; temp[pos] = tmp; eleT[i] = temp[m + i]; } for (i = 0; i < eleS.length; i++) marcas[eleS[i]] = true; /*Building of the S set from the flags*/ conjS = new double[m][datosTrain[0].length]; clasesS = new int[m]; for (o = 0, l = 0; o < datosTrain.length; o++) { if (marcas[o]) { // the instance will be evaluated for (j = 0; j < datosTrain[0].length; j++) { conjS[l][j] = datosTrain[o][j]; } clasesS[l] = clasesTrain[o]; l++; } } /*Evaluation of the S set*/ bestAc = 0; for (i = 0; i < datosTrain.length; i++) { claseObt = KNN.evaluacionKNN2(k, conjS, clasesS, datosTrain[i], nClases); if (claseObt == clasesTrain[i]) // correct clasification bestAc++; } /*Body of the ENNRS algorithm. Change the S set in each iteration for instances of the T set until get a complete sustitution*/ for (i = 0; i < n; i++) { /*Preparation the set to interchange*/ for (j = 0; j < eleS.length; j++) { pos = Randomize.Randint(j, eleT.length - 1); tmp = eleT[j]; eleT[j] = eleT[pos]; eleT[pos] = tmp; } /*Interchange of instances*/ for (j = 0; j < eleS.length; j++) { tmp = eleS[j]; eleS[j] = eleT[j]; eleT[j] = tmp; marcas[eleS[j]] = true; marcas[eleT[j]] = false; } /*Building of the S set from the flags*/ for (o = 0, l = 0; o < datosTrain.length; o++) { if (marcas[o]) { // the instance will evaluate for (j = 0; j < datosTrain[0].length; j++) { conjS[l][j] = datosTrain[o][j]; } clasesS[l] = clasesTrain[o]; l++; } } /*Evaluation of the S set*/ aciertos = 0; for (j = 0; j < datosTrain.length; j++) { claseObt = KNN.evaluacionKNN2(k, conjS, clasesS, datosTrain[j], nClases); if (claseObt == clasesTrain[j]) // correct clasification aciertos++; } if (aciertos > bestAc) { // keep S bestAc = aciertos; } else { // undo changes for (j = 0; j < eleS.length; j++) { tmp = eleS[j]; eleS[j] = eleT[j]; eleT[j] = tmp; marcas[eleS[j]] = true; marcas[eleT[j]] = false; } } } /*Building of the S set from the flags*/ /*Building of the S set from the flags*/ for (o = 0, l = 0; o < datosTrain.length; o++) { if (marcas[o]) { // the instance will evaluate for (j = 0; j < datosTrain[0].length; j++) { conjS[l][j] = datosTrain[o][j]; } clasesS[l] = clasesTrain[o]; l++; } } System.out.println( "ENNRS " + relation + " " + (double) (System.currentTimeMillis() - tiempo) / 1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; // Working on training for (i = 0; i < datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i], conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); // Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; // Check time for (i = 0; i < realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0] = KNN.evaluate(datosTest[i], conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); }