/** * Adds a SMRotationInterpolator Behavior to the SMGroup * * @param duration * @param start * @param rotXAxis Angle about x in which the axis of rotation is going to be rotated * @param rotYAxis Angle about y in which the axis of rotation is going to be rotated * @param rotZAxis Angle about z in which the axis of rotation is going to be rotated * @param startAngle * @param finsishAngle */ public void addRotationAnim( long duration, long start, double rotXAxis, double rotYAxis, double rotZAxis, float startAngle, float finishAngle) { // Creates a necessary TransformGroup for the SMRotationInterpolator TransformGroup tg = new TransformGroup(); // Adds the animation between the child and it Parent Group parent = (Group) _child.getParent(); parent.removeChild(_child); tg.addChild(_child); parent.addChild(tg); // Allows writing on TransfomGroup tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); // Creates an Alpha function Alpha rotationAlpha = new Alpha(1, duration); rotationAlpha.setStartTime(System.currentTimeMillis() + start); // Calculates the axis of rotation Transform3D rX = new Transform3D(); Transform3D rY = new Transform3D(); Transform3D rZ = new Transform3D(); rX.rotX(rotXAxis); rY.rotY(rotYAxis); rZ.rotZ(rotZAxis); rY.mul(rZ); rX.mul(rY); // Creates the SMRotationInterpolator SMRotationInterpolator rotator = new SMRotationInterpolator(rotationAlpha, tg, rX, startAngle, finishAngle, start); // Sets the area to render rotator.setSchedulingBounds(_bounds); // Adds the rotation animation to the TransformGroup tg.addChild(rotator); }
// Override Behavior's stimulus method to handle the event public void processStimulus(Enumeration criteria) { // NOTE: This assumes 3 objects. It should be generalized to // "n" objects. double val = alpha.value(); if (val < 0.5) { double a = val * 2.0; weights[0] = 1.0 - a; weights[1] = a; weights[2] = 0.0; } else { double a = (val - 0.5) * 2.0; weights[0] = 0.0; weights[1] = 1.0f - a; weights[2] = a; } morph.setWeights(weights); // Set wakeup criteria for next time wakeupOn(w); }
/** * Computes the new transform for this interpolator for a given alpha value. * * @param alphaValue alpha value between 0.0 and 1.0 * @param transform object that receives the computed transform for the specified alpha value * @since Java 3D 1.3 */ public void computeTransform(float alphaValue, Transform3D transform) { // compute the current value of u from alpha and the // determine lower and upper knot points computePathInterpolation(alphaValue); // Determine the segment within which we will be interpolating currentSegmentIndex = this.lowerKnot - 1; // if we are at the start of the curve if (currentSegmentIndex == 0 && currentU == 0f) { iHeading = keyFrames[1].heading; iPitch = keyFrames[1].pitch; iBank = keyFrames[1].bank; iPos.set(keyFrames[1].position); iScale.set(keyFrames[1].scale); // if we are at the end of the curve } else if (currentSegmentIndex == (numSegments - 1) && currentU == 1.0) { iHeading = keyFrames[upperKnot].heading; iPitch = keyFrames[upperKnot].pitch; iBank = keyFrames[upperKnot].bank; iPos.set(keyFrames[upperKnot].position); iScale.set(keyFrames[upperKnot].scale); // if we are somewhere in between the curve } else { // Get a reference to the current spline segment i.e. the // one bounded by lowerKnot and upperKnot currentSegment = cubicSplineCurve.getSegment(currentSegmentIndex); // interpolate quaternions iHeading = currentSegment.getInterpolatedHeading(currentU); iPitch = currentSegment.getInterpolatedPitch(currentU); iBank = currentSegment.getInterpolatedBank(currentU); // interpolate position currentSegment.getInterpolatedPositionVector(currentU, iPos); // interpolate position currentSegment.getInterpolatedScale(currentU, iScale); // System.out.println("Pos :" + iPos); } // Modification by ReubenDB if (colorRampingInterpolate == true) { float[] curPos = new float[3]; iPos.get(curPos); myColorRamp.getColor(curPos[1], histColor); // System.out.println("SETING COLOR:" + histColor + " CurPos: " + curPos[0] + ", " + curPos[1] // + ", " + curPos[2]); objectCA.setColor(histColor); // System.out.println("CurrentAlpha = " + myAlpha.value()); } if (timeDisplayInterpolate == true) { myTimeDisplay.updateDisplayFromAlpha(myAlpha.value()); // System.out.println(myAlpha.value()); } // Generate a transformation matrix in tMat using interpolated // heading, pitch and bank pitchMat.setIdentity(); pitchMat.rotX(-iPitch); bankMat.setIdentity(); bankMat.rotZ(iBank); tMat.setIdentity(); tMat.rotY(-iHeading); tMat.mul(pitchMat); tMat.mul(bankMat); // TODO: Vijay - Handle Non-Uniform scale // Currently this interpolator does not handle non uniform scale // We cheat by just taking the x scale component // Scale the transformation matrix sMat.set((double) iScale.x); tMat.mul(sMat); // Set the translation components. tMat.m03 = iPos.x; tMat.m13 = iPos.y; tMat.m23 = iPos.z; rotation.set(tMat); // construct a Transform3D from: axis * rotation * axisInverse transform.mul(axis, rotation); transform.mul(transform, axisInverse); }
// Override Behavior's initialize method to setup wakeup criteria public void initialize() { alpha.setStartTime(System.currentTimeMillis()); // Establish initial wakeup criteria wakeupOn(w); }