public Alignment alignSentencePair(SentencePair sentencePair) { Alignment alignment = new Alignment(); List<String> frenchWords = sentencePair.getFrenchWords(); List<String> englishWords = sentencePair.getEnglishWords(); int numFrenchWords = frenchWords.size(); int numEnglishWords = englishWords.size(); // Model 1 assumes all alignments are equally likely // So we can just take the argMax of t(f|e) to get the englishMaxPosition for (int frenchPosition = 0; frenchPosition < numFrenchWords; frenchPosition++) { String f = frenchWords.get(frenchPosition); int englishMaxPosition = -1; double maxTranslationProb = translationProbs.getCount(f, NULL); for (int englishPosition = 0; englishPosition < numEnglishWords; englishPosition++) { String e = englishWords.get(englishPosition); double translationProb = translationProbs.getCount(f, e); if (translationProb > maxTranslationProb) { maxTranslationProb = translationProb; englishMaxPosition = englishPosition; } } alignment.addAlignment(englishMaxPosition, frenchPosition, true); } return alignment; }
public Alignment alignSentencePair(SentencePair sentencePair) { Alignment alignment = new Alignment(); List<String> frenchWords = sentencePair.getFrenchWords(); List<String> englishWords = sentencePair.getEnglishWords(); int numFrenchWords = frenchWords.size(); int numEnglishWords = englishWords.size(); for (int frenchPosition = 0; frenchPosition < numFrenchWords; frenchPosition++) { String f = frenchWords.get(frenchPosition); int englishMaxPosition = frenchPosition; if (englishMaxPosition >= numEnglishWords) englishMaxPosition = -1; // map French word to BASELINE if c(f,e) = 0 for all English words double maxConditionalProb = 0; for (int englishPosition = 0; englishPosition < numEnglishWords; englishPosition++) { String e = englishWords.get(englishPosition); double conditionalGivenEnglish = collocationCounts.getCount(f, e) / (eCounts.getCount(e)); if (conditionalGivenEnglish > maxConditionalProb) { maxConditionalProb = conditionalGivenEnglish; englishMaxPosition = englishPosition; } } alignment.addAlignment(englishMaxPosition, frenchPosition, true); } return alignment; }
private Tree<String> merge(Tree<String> leftTree, Tree<String> rightTree) { int span = leftTree.getYield().size() + rightTree.getYield().size(); String mostFrequentLabel = spanToCategories.getCounter(span).argMax(); List<Tree<String>> children = new ArrayList<Tree<String>>(); children.add(leftTree); children.add(rightTree); return new Tree<String>(mostFrequentLabel, children); }
private double getDiceCoefficient(String f, String e) { double intersection = collocationCountSentences.getCount(f,e); double cardinalityF = fCountSentences.getCount(f); double cardinalityE = eCountSentences.getCount(e); double dice = 2*intersection / (cardinalityF + cardinalityE); return dice; }
private void tallyTagging(String word, String tag) { if (!isKnown(word)) { totalWordTypes += 1.0; typeTagCounter.incrementCount(tag, 1.0); } totalTokens += 1.0; tagCounter.incrementCount(tag, 1.0); wordCounter.incrementCount(word, 1.0); wordToTagCounters.incrementCount(word, tag, 1.0); }
public void train(List<LabeledLocalTrigramContext> labeledLocalTrigramContexts) { // collect word-tag counts for (LabeledLocalTrigramContext labeledLocalTrigramContext : labeledLocalTrigramContexts) { String word = labeledLocalTrigramContext.getCurrentWord(); String tag = labeledLocalTrigramContext.getCurrentTag(); if (!wordsToTags.keySet().contains(word)) { // word is currently unknown, so tally its tag in the unknown tag counter unknownWordTags.incrementCount(tag, 1.0); } wordsToTags.incrementCount(word, tag, 1.0); seenTagTrigrams.add( makeTrigramString( labeledLocalTrigramContext.getPreviousPreviousTag(), labeledLocalTrigramContext.getPreviousTag(), labeledLocalTrigramContext.getCurrentTag())); } wordsToTags = Counters.conditionalNormalize(wordsToTags); unknownWordTags = Counters.normalize(unknownWordTags); }
private int tallySpans(Tree<String> tree, int start) { if (tree.isLeaf() || tree.isPreTerminal()) return 1; int end = start; for (Tree<String> child : tree.getChildren()) { int childSpan = tallySpans(child, end); end += childSpan; } String category = tree.getLabel(); if (!category.equals("ROOT")) spanToCategories.incrementCount(end - start, category, 1.0); return end - start; }
/* Returns a smoothed estimate of P(word|tag) */ public double scoreTagging(String word, String tag) { double p_tag = tagCounter.getCount(tag) / totalTokens; double c_word = wordCounter.getCount(word); double c_tag_and_word = wordToTagCounters.getCount(word, tag); if (c_word < 10) { // rare or unknown c_word += 1.0; c_tag_and_word += typeTagCounter.getCount(tag) / totalWordTypes; } double p_word = (1.0 + c_word) / (totalTokens + totalWordTypes); double p_tag_given_word = c_tag_and_word / c_word; return p_tag_given_word / p_tag * p_word; }
public Counter<String> getLogScoreCounter(LocalTrigramContext localTrigramContext) { int position = localTrigramContext.getPosition(); String word = localTrigramContext.getWords().get(position); Counter<String> tagCounter = unknownWordTags; if (wordsToTags.keySet().contains(word)) { tagCounter = wordsToTags.getCounter(word); } Set<String> allowedFollowingTags = allowedFollowingTags( tagCounter.keySet(), localTrigramContext.getPreviousPreviousTag(), localTrigramContext.getPreviousTag()); Counter<String> logScoreCounter = new Counter<String>(); for (String tag : tagCounter.keySet()) { double logScore = Math.log(tagCounter.getCount(tag)); if (!restrictTrigrams || allowedFollowingTags.isEmpty() || allowedFollowingTags.contains(tag)) logScoreCounter.setCount(tag, logScore); } return logScoreCounter; }
private void trainCounters() { for (SentencePair sentencePair : trainingSentencePairs) { List<String> frenchWords = sentencePair.getFrenchWords(); List<String> englishWords = sentencePair.getEnglishWords(); //fCounts.incrementAll(frenchWords, 1.0); // won't affect the argMax eCounts.incrementAll(englishWords, 1.0); for (String f: frenchWords) { for (String e: englishWords) collocationCounts.incrementCount(f, e, 1.0); } } System.out.println("Trained!"); }
private void trainCounters() { for (SentencePair sentencePair : trainingSentencePairs) { List<String> frenchWords = sentencePair.getFrenchWords(); List<String> englishWords = sentencePair.getEnglishWords(); Set<String> frenchSet = new HashSet<String>(frenchWords); Set<String> englishSet = new HashSet<String>(englishWords); fCountSentences.incrementAll(frenchSet, 1.0); eCountSentences.incrementAll(englishSet, 1.0); for (String f: frenchSet) { for (String e: englishSet) collocationCountSentences.incrementCount(f, e, 1.0); } } System.out.println("Trained!"); }
public void setTransitionCount(S start, S end, double count) { forwardTransitions.setCount(start, end, count); backwardTransitions.setCount(end, start, count); }
/** * For a given state, returns a counter over what states can precede it in the markov process, * along with the cost of that transition. */ public Counter<S> getBackwardTransitions(S state) { return backwardTransitions.getCounter(state); }
/** * For a given state, returns a counter over what states can be next in the markov process, * along with the cost of that transition. Caution: a state not in the counter is illegal, and * should be considered to have cost Double.NEGATIVE_INFINITY, but Counters score items they * don't contain as 0. */ public Counter<S> getForwardTransitions(S state) { return forwardTransitions.getCounter(state); }
public Tree<String> getBestParseOld(List<String> sentence) { // TODO: This implements the CKY algorithm CounterMap<String, String> parseScores = new CounterMap<String, String>(); System.out.println(sentence.toString()); // First deal with the lexicons int index = 0; int span = 1; // All spans are 1 at the lexicon level for (String word : sentence) { for (String tag : lexicon.getAllTags()) { double score = lexicon.scoreTagging(word, tag); if (score >= 0.0) { // This lexicon may generate this word // We use a counter map in order to store the scores for this sentence parse. parseScores.setCount(index + " " + (index + span), tag, score); } } index = index + 1; } // handle unary rules now HashMap<String, Triplet<Integer, String, String>> backHash = new HashMap< String, Triplet<Integer, String, String>>(); // hashmap to store back propation // System.out.println("Lexicons found"); Boolean added = true; while (added) { added = false; for (index = 0; index < sentence.size(); index++) { // For each index+ span pair, get the counter. Counter<String> count = parseScores.getCounter(index + " " + (index + span)); PriorityQueue<String> countAsPQ = count.asPriorityQueue(); while (countAsPQ.hasNext()) { String entry = countAsPQ.next(); // System.out.println("I am fine here!!"); List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry); for (UnaryRule rule : unaryRules) { // These are the unary rules which might give rise to the above preterminal double prob = rule.getScore() * parseScores.getCount(index + " " + (index + span), entry); if (prob > parseScores.getCount(index + " " + (index + span), rule.parent)) { parseScores.setCount(index + " " + (index + span), rule.parent, prob); backHash.put( index + " " + (index + span) + " " + rule.parent, new Triplet<Integer, String, String>(-1, entry, null)); added = true; } } } } } // System.out.println("Lexicon unaries dealt with"); // Now work with the grammar to produce higher level probabilities for (span = 2; span <= sentence.size(); span++) { for (int begin = 0; begin <= (sentence.size() - span); begin++) { int end = begin + span; for (int split = begin + 1; split <= end - 1; split++) { Counter<String> countLeft = parseScores.getCounter(begin + " " + split); Counter<String> countRight = parseScores.getCounter(split + " " + end); // List<BinaryRule> leftRules= new ArrayList<BinaryRule>(); HashMap<Integer, BinaryRule> leftMap = new HashMap<Integer, BinaryRule>(); // List<BinaryRule> rightRules=new ArrayList<BinaryRule>(); HashMap<Integer, BinaryRule> rightMap = new HashMap<Integer, BinaryRule>(); for (String entry : countLeft.keySet()) { for (BinaryRule rule : grammar.getBinaryRulesByLeftChild(entry)) { if (!leftMap.containsKey(rule.hashCode())) { leftMap.put(rule.hashCode(), rule); } } } for (String entry : countRight.keySet()) { for (BinaryRule rule : grammar.getBinaryRulesByRightChild(entry)) { if (!rightMap.containsKey(rule.hashCode())) { rightMap.put(rule.hashCode(), rule); } } } // System.out.println("About to enter the rules loops"); for (Integer ruleHash : leftMap.keySet()) { if (rightMap.containsKey(ruleHash)) { BinaryRule ruleRight = rightMap.get(ruleHash); double prob = ruleRight.getScore() * parseScores.getCount(begin + " " + split, ruleRight.leftChild) * parseScores.getCount(split + " " + end, ruleRight.rightChild); // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob); if (prob > parseScores.getCount(begin + " " + end, ruleRight.parent)) { // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob); // System.out.println("parentrule :"+ ruleRight.getParent()); parseScores.setCount(begin + " " + end, ruleRight.getParent(), prob); backHash.put( begin + " " + end + " " + ruleRight.parent, new Triplet<Integer, String, String>( split, ruleRight.leftChild, ruleRight.rightChild)); } } } // System.out.println("Exited rules loop"); } // System.out.println("Grammar found for " + begin + " "+ end); // Now handle unary rules added = true; while (added) { added = false; Counter<String> count = parseScores.getCounter(begin + " " + end); PriorityQueue<String> countAsPriorityQueue = count.asPriorityQueue(); while (countAsPriorityQueue.hasNext()) { String entry = countAsPriorityQueue.next(); List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry); for (UnaryRule rule : unaryRules) { double prob = rule.getScore() * parseScores.getCount(begin + " " + (end), entry); if (prob > parseScores.getCount(begin + " " + (end), rule.parent)) { parseScores.setCount(begin + " " + (end), rule.parent, prob); backHash.put( begin + " " + (end) + " " + rule.parent, new Triplet<Integer, String, String>(-1, entry, null)); added = true; } } } } // System.out.println("Unaries dealt for " + begin + " "+ end); } } // Create and return the parse tree Tree<String> parseTree = new Tree<String>("null"); // System.out.println(parseScores.getCounter(0+" "+sentence.size()).toString()); String parent = parseScores.getCounter(0 + " " + sentence.size()).argMax(); if (parent == null) { System.out.println(parseScores.getCounter(0 + " " + sentence.size()).toString()); System.out.println("THIS IS WEIRD"); } parent = "ROOT"; parseTree = getParseTreeOld(sentence, backHash, 0, sentence.size(), parent); // System.out.println("PARSE SCORES"); // System.out.println(parseScores.toString()); // System.out.println("BACK HASH"); // System.out.println(backHash.toString()); // parseTree = addRoot(parseTree); // System.out.println(parseTree.toString()); // return parseTree; return TreeAnnotations.unAnnotateTree(parseTree); }
private CounterMap<String,String> trainEM(int maxIterations) { Set<String> englishVocab = new HashSet<String>(); Set<String> frenchVocab = new HashSet<String>(); CounterMap<String,String> translations = new CounterMap<String,String>(); englishVocab.add(NULL); int iteration = 0; final double thresholdProb = 0.0001; for (SentencePair sentencePair : trainingSentencePairs) { List<String> frenchWords = sentencePair.getFrenchWords(); List<String> englishWords = sentencePair.getEnglishWords(); // add words from list to vocabulary sets englishVocab.addAll(englishWords); frenchVocab.addAll(frenchWords); } System.out.println("Ready"); // We need to initialize translations.getCount(f,e) uniformly // t(f|e) summed over all e in {E + NULL} = 1 final double initialCount = 1.0 / englishVocab.size(); while(iteration < maxIterations) { CounterMap<String,String> counts = new CounterMap<String,String>(); // set count(f|e) to 0 for all e,f Counter<String> totalEnglish = new Counter<String>(); // set total(e) to 0 for all e // E-step: loop over all sentences and update counts for (SentencePair sentencePair : trainingSentencePairs) { List<String> frenchWords = sentencePair.getFrenchWords(); List<String> englishWords = sentencePair.getEnglishWords(); int numFrenchWords = frenchWords.size(); int numEnglishWords = englishWords.size(); Counter<String> sTotalF = new Counter<String>(); // compute normalization constant sTotalF for (int frenchPosition = 0; frenchPosition < numFrenchWords; frenchPosition++) { String f = frenchWords.get(frenchPosition); // initialize and compute for English = NULL if (!translations.containsKey(f) && initialize) translations.setCount(f, NULL, initialCount); else if (!translations.containsKey(f)) translations.setCount(f, NULL, thresholdProb); sTotalF.incrementCount(f, translations.getCount(f, NULL)); for (int englishPosition = 0; englishPosition < numEnglishWords; englishPosition++) { String e = englishWords.get(englishPosition); if (!(translations.getCounter(f)).containsKey(e) && initialize) translations.setCount(f, e, initialCount); else if (!(translations.getCounter(f)).containsKey(e)) translations.setCount(f, e, thresholdProb); sTotalF.incrementCount(f, translations.getCount(f, e)); } } // collect counts in counts and totalEnglish for (int frenchPosition = 0; frenchPosition < numFrenchWords; frenchPosition++) { String f = frenchWords.get(frenchPosition); // collect counts for English = NULL double count = translations.getCount(f, NULL) / sTotalF.getCount(f); counts.incrementCount(NULL, f, count); totalEnglish.incrementCount(NULL, count); for (int englishPosition = 0; englishPosition < numEnglishWords; englishPosition++) { String e = englishWords.get(englishPosition); count = translations.getCount(f, e) / sTotalF.getCount(f); counts.incrementCount(e, f, count); totalEnglish.incrementCount(e, count); } } } // end of E-step System.out.println("Completed E-step"); // M-step: update probabilities with counts from E-step and check for convergence iteration++; for (String e : counts.keySet()) {//englishVocab) { double normalizer = totalEnglish.getCount(e); for (String f : (counts.getCounter(e)).keySet()) {//frenchVocab) { // To speed implementation, we want to update translations only when count / normalizer > threshold double prob = counts.getCount(e, f) / normalizer; if (!initialize) { if (prob > thresholdProb) translations.setCount(f, e, prob); else (translations.getCounter(f)).removeKey(e); } else { translations.setCount(f, e, prob); } } } System.out.println("Completed iteration " + iteration); } // end of M-step System.out.println("Trained!"); return translations; }