double calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i<active_size;i++) { if(y[i]==+1) { if(is_lower_bound(i)) ub1 = Math.min(ub1,G[i]); else if(is_upper_bound(i)) lb1 = Math.max(lb1,G[i]); else { ++nr_free1; sum_free1 += G[i]; } } else { if(is_lower_bound(i)) ub2 = Math.min(ub2,G[i]); else if(is_upper_bound(i)) lb2 = Math.max(lb2,G[i]); else { ++nr_free2; sum_free2 += G[i]; } } } double r1,r2; if(nr_free1 > 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si.r = (r1+r2)/2; return (r1-r2)/2; }
void Solve(int l, Kernel Q, double[] b_, byte[] y_, double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, int shrinking) { this.l = l; this.Q = Q; b = (double[])b_.clone(); y = (byte[])y_.clone(); alpha = (double[])alpha_.clone(); this.Cp = Cp; this.Cn = Cn; this.eps = eps; this.unshrinked = false; // initialize alpha_status { alpha_status = new byte[l]; for(int i=0;i<l;i++) update_alpha_status(i); } // initialize active set (for shrinking) { active_set = new int[l]; for(int i=0;i<l;i++) active_set[i] = i; active_size = l; } // initialize gradient { G = new double[l]; G_bar = new double[l]; int i; for(i=0;i<l;i++) { G[i] = b[i]; G_bar[i] = 0; } for(i=0;i<l;i++) if(!is_lower_bound(i)) { float[] Q_i = Q.get_Q(i,l); double alpha_i = alpha[i]; int j; for(j=0;j<l;j++) G[j] += alpha_i*Q_i[j]; if(is_upper_bound(i)) for(j=0;j<l;j++) G_bar[j] += get_C(i) * Q_i[j]; } } // optimization step int iter = 0; int counter = Math.min(l,1000)+1; int[] working_set = new int[2]; while(true) { // show progress and do shrinking if(--counter == 0) { counter = Math.min(l,1000); if(shrinking!=0) do_shrinking(); System.err.print("."); } if(select_working_set(working_set)!=0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; System.err.print("*"); if(select_working_set(working_set)!=0) break; else counter = 1; // do shrinking next iteration } int i = working_set[0]; int j = working_set[1]; ++iter; // update alpha[i] and alpha[j], handle bounds carefully float[] Q_i = Q.get_Q(i,active_size); float[] Q_j = Q.get_Q(j,active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if(y[i]!=y[j]) { double delta = (-G[i]-G[j])/(Q_i[i]+Q_j[j]+2*Q_i[j]); double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if(diff > 0) { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if(diff > C_i - C_j) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double delta = (G[i]-G[j])/(Q_i[i]+Q_j[j]-2*Q_i[j]); double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if(sum > C_i) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;k<active_size;k++) { G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; } // update alpha_status and G_bar { boolean ui = is_upper_bound(i); boolean uj = is_upper_bound(j); update_alpha_status(i); update_alpha_status(j); int k; if(ui != is_upper_bound(i)) { Q_i = Q.get_Q(i,l); if(ui) for(k=0;k<l;k++) G_bar[k] -= C_i * Q_i[k]; else for(k=0;k<l;k++) G_bar[k] += C_i * Q_i[k]; } if(uj != is_upper_bound(j)) { Q_j = Q.get_Q(j,l); if(uj) for(k=0;k<l;k++) G_bar[k] -= C_j * Q_j[k]; else for(k=0;k<l;k++) G_bar[k] += C_j * Q_j[k]; } } } // calculate rho si.rho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;i<l;i++) v += alpha[i] * (G[i] + b[i]); si.obj = v/2; } // put back the solution { for(int i=0;i<l;i++) alpha_[active_set[i]] = alpha[i]; } si.upper_bound_p = Cp; si.upper_bound_n = Cn; System.out.print("\noptimization finished, #iter = "+iter+"\n"); }