private void getintbright() { weights = new float[ncurves][xpts][ypts]; for (int i = 0; i < ncurves; i++) { nmeas[i] = 0; for (int j = 0; j < xpts; j++) { for (int k = 0; k < ypts; k++) { nmeas[i] += (int) pch[i][j][k]; } } double tempavg = 0.0; double tempavg2 = 0.0; double temp2avg = 0.0; double temp2avg2 = 0.0; double tempccavg = 0.0; for (int j = 0; j < xpts; j++) { for (int k = 0; k < ypts; k++) { double normed = (double) pch[i][j][k] / (double) nmeas[i]; if (pch[i][j][k] > 0.0f) { weights[i][j][k] = (float) ((double) nmeas[i] / (normed * (1.0f - normed))); } else { weights[i][j][k] = 1.0f; } tempavg += normed * (double) j; tempavg2 += normed * (double) j * (double) j; temp2avg += normed * (double) k; temp2avg2 += normed * (double) k * (double) k; tempccavg += normed * (double) k * (double) j; } } tempccavg -= tempavg * temp2avg; brightcc[i] = tempccavg / Math.sqrt(tempavg * temp2avg); tempavg2 -= tempavg * tempavg; tempavg2 /= tempavg; bright1[i] = (tempavg2 - 1.0); temp2avg2 -= temp2avg * temp2avg; temp2avg2 /= temp2avg; bright2[i] = (temp2avg2 - 1.0); intensity1[i] = tempavg; intensity2[i] = temp2avg; if (psfflag == 0) { bright1[i] /= 0.3536; bright2[i] /= 0.3536; brightcc[i] /= 0.3536; } else { if (psfflag == 1) { bright1[i] /= 0.078; bright2[i] /= 0.078; brightcc[i] /= 0.078; } else { bright1[i] /= 0.5; bright2[i] /= 0.5; brightcc[i] /= 0.5; } } number1[i] = intensity1[i] / bright1[i]; number2[i] = intensity2[i] / bright2[i]; brightmincc[i] = (bright1[i] * beta) * Math.sqrt(intensity1[i] / intensity2[i]); } }
public void updatebeta() { for (int i = 0; i <= ncurves; i++) { brightmincc[i] = (bright1[i] * beta) / Math.sqrt(intensity1[i] / intensity2[i]); eminccarray[i].setText("" + (float) brightmincc[i]); } }
private void updateavg() { nmeas[ncurves] = 0; avg = new float[xpts][ypts]; avgweights = new float[xpts][ypts]; for (int i = 0; i < ncurves; i++) { if (include[i]) { for (int j = 0; j < xpts; j++) { for (int k = 0; k < ypts; k++) { avg[j][k] += pch[i][j][k]; nmeas[ncurves] += (int) pch[i][j][k]; } } } } double tempavg = 0.0; double tempavg2 = 0.0; double temp2avg = 0.0; double temp2avg2 = 0.0; double tempccavg = 0.0; for (int i = 0; i < xpts; i++) { for (int j = 0; j < ypts; j++) { double normed = (double) avg[i][j] / (double) nmeas[ncurves]; avgweights[i][j] = (float) ((double) nmeas[ncurves] / (normed * (1.0f - normed))); if (avg[i][j] > 0.0f) { avgweights[i][j] = (float) ((double) nmeas[ncurves] / (normed * (1.0f - normed))); } else { avgweights[i][j] = 1.0f; } tempavg += (double) i * normed; tempavg2 += (double) i * (double) i * normed; temp2avg += (double) j * normed; temp2avg2 += (double) j * (double) j * normed; tempccavg += (double) i * (double) j * normed; } } tempccavg -= tempavg * temp2avg; brightcc[ncurves] = tempccavg / Math.sqrt(tempavg * temp2avg); tempavg2 -= tempavg * tempavg; tempavg2 /= tempavg; bright1[ncurves] = (tempavg2 - 1.0); temp2avg2 -= temp2avg * temp2avg; temp2avg2 /= temp2avg; bright2[ncurves] = (temp2avg2 - 1.0); intensity1[ncurves] = tempavg; intensity2[ncurves] = temp2avg; if (psfflag == 0) { bright1[ncurves] /= 0.3536; bright2[ncurves] /= 0.3536; brightcc[ncurves] /= 0.3536; } else { if (psfflag == 1) { bright1[ncurves] /= 0.078; bright2[ncurves] /= 0.078; brightcc[ncurves] /= 0.078; } else { bright1[ncurves] /= 0.5; bright2[ncurves] /= 0.5; brightcc[ncurves] /= 0.5; } } number1[ncurves] = intensity1[ncurves] / bright1[ncurves]; number2[ncurves] = intensity2[ncurves] / bright2[ncurves]; brightmincc[ncurves] = (bright1[ncurves] * beta) * Math.sqrt(intensity1[ncurves] / intensity2[ncurves]); }
private void geterrors() { GenericDialog gd = new GenericDialog("Options"); float conf = 0.67f; gd.addNumericField("Confidence Limit", (int) (conf * 100.0f), 5, 10, null); gd.addChoice("Error Parameter", paramsnames, paramsnames[0]); double spacing = 0.01; gd.addNumericField("Chi^2 plot spacing (% of value)?", spacing * 100.0, 2, 10, null); boolean globalerror = false; gd.addCheckbox("Global Fit Error?", globalerror); int dataset = 0; gd.addNumericField("Data Set (for Global Error)", dataset, 0); gd.showDialog(); if (gd.wasCanceled()) { return; } conf = 0.01f * (float) gd.getNextNumber(); int paramindex = (int) gd.getNextChoiceIndex(); spacing = 0.01 * gd.getNextNumber(); globalerror = gd.getNextBoolean(); dataset = (int) gd.getNextNumber(); if (globalerror) { support_plane_errors erclass = new support_plane_errors(this, 0.0001, 50, true, 0.1); int[] erindeces = {paramindex, dataset}; // need to set up all the matrices int nsel = 0; int nparams = 11; for (int i = 0; i < ncurves; i++) { if (include[i]) { nsel++; } } double[][] params = new double[nsel][nparams]; String[][] tempformulas = new String[nsel][nparams]; double[][][] constraints = new double[2][nsel][nparams]; int[][] vflmatrix = new int[nsel][nparams]; float[][] tempdata = new float[nsel][xpts * ypts]; float[][] tempweights = new float[nsel][xpts * ypts]; int nfit = 0; int counter = 0; for (int i = 0; i < ncurves; i++) { if (include[i]) { for (int j = 0; j < nparams; j++) { params[counter][j] = globalparams[i][j]; tempformulas[counter][j] = globalformulas[i][j]; constraints[0][counter][j] = globalconstraints[0][i][j]; constraints[1][counter][j] = globalconstraints[1][i][j]; vflmatrix[counter][j] = globalvflmatrix[i][j]; if (vflmatrix[counter][j] == 0 || (j == 0 && vflmatrix[counter][j] == 2)) { nfit++; } } for (int j = 0; j < xpts; j++) { for (int k = 0; k < ypts; k++) { tempdata[counter][j + k * xpts] = (float) ((double) pch[i][j][k] / (double) nmeas[i]); tempweights[counter][j + k * xpts] = weights[i][j][k]; } } counter++; } } int dofnum = xpts * ypts * nsel - (nfit - 1) - 1; int dofden = xpts * ypts * nsel - nfit - 1; // double flim=FLimit(dofnum,dofden,(double)conf); double flim = (new jdist()).FLimit(dofnum, dofden, (double) conf); IJ.log("FLimit = " + (float) flim); if (flim == Double.NaN && flim < 1.0) { IJ.showMessage("Invalid Limiting F Value"); return; } double truespacing = Math.abs(params[erindeces[1]][erindeces[0]] * spacing); double[][] c2plot = erclass.geterrorsglobal( params, vflmatrix, tempformulas, paramsnames, constraints, tempdata, tempweights, flim, truespacing, erindeces); IJ.log("upper limit = " + c2plot[1][0] + " lower limit = " + c2plot[0][0]); int templength = c2plot[0].length; float[][] c2plotf = new float[2][templength - 1]; for (int i = 0; i < (templength - 1); i++) { c2plotf[0][i] = (float) c2plot[0][i + 1]; c2plotf[1][i] = (float) c2plot[1][i + 1]; } new PlotWindow4( "c2 plot", paramsnames[paramindex] + "[" + dataset + "]", "Chi^2", c2plotf[0], c2plotf[1]) .draw(); } else { support_plane_errors erclass = new support_plane_errors(this, 0.0001, 50, false, 0.1); int errindex = paramindex; float[] tempdata = new float[xpts * ypts]; float[] tempweights = new float[xpts * ypts]; for (int i = 0; i < xpts; i++) { for (int j = 0; j < ypts; j++) { tempdata[i + j * xpts] = (float) ((double) avg[i][j] / (double) nmeas[ncurves]); tempweights[i + j * xpts] = avgweights[i][j]; } } int nfit = 0; for (int i = 0; i < 7; i++) { if (avgfixes[i] == 0) { nfit++; } } int dofnum = xpts * ypts - (nfit - 1) - 1; int dofden = xpts * ypts - nfit - 1; double flim = (new jdist()).FLimit(dofnum, dofden, (double) conf); IJ.log("FLimit = " + (float) flim); if (flim == Double.NaN && flim < 1.0) { IJ.showMessage("Invalid Limiting F Value"); return; } double truespacing = Math.abs(avgparams[errindex] * spacing); double[][] c2plot = erclass.geterrors( avgparams, avgfixes, avgconstraints, tempdata, tempweights, flim, truespacing, errindex); IJ.log("upper limit = " + c2plot[1][0] + " lower limit = " + c2plot[0][0]); int templength = c2plot[0].length; float[][] c2plotf = new float[2][templength - 1]; for (int i = 0; i < (templength - 1); i++) { c2plotf[0][i] = (float) c2plot[0][i + 1]; c2plotf[1][i] = (float) c2plot[1][i + 1]; } new PlotWindow4("c2 plot", paramsnames[errindex], "Chi^2", c2plotf[0], c2plotf[1]).draw(); } }
public boolean get_errors(double[] params, int[] fixes) { GenericDialog gd = new GenericDialog("Error Options"); String[] methods = {"Support Plane", "Monte Carlo"}; gd.addChoice("Method", methods, methods[0]); float conf = 0.67f; gd.addNumericField("SP_Confidence Limit (%)", (int) (conf * 100.0f), 5, 10, null); String[] labels = {"P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9", "P10"}; gd.addChoice("SP_Parameter", labels, labels[0]); double spacing = 0.01; gd.addNumericField("SP_Chi^2_plot_spacing (% of value)?", spacing * 100.0, 2, 10, null); int ntrials = 100; gd.addNumericField("MC_#_Trials", ntrials, 0); gd.showDialog(); if (gd.wasCanceled()) { return false; } int methodindex = gd.getNextChoiceIndex(); conf = 0.01f * (float) gd.getNextNumber(); int paramindex = gd.getNextChoiceIndex(); spacing = 0.01 * gd.getNextNumber(); ntrials = (int) gd.getNextNumber(); if (methodindex == 0) { support_plane_errors_v2 erclass = new support_plane_errors_v2(this, 0.0001, 50, false, 0.1); int errindex = paramindex; int nfit = 0; for (int i = 0; i < labels.length; i++) { if (fixes[i] == 0) { nfit++; } } int npts = tempdata.length; int dofnum = npts - (nfit - 1) - 1; int dofden = npts - nfit - 1; double flim = (new jdist()).FLimit(dofnum, dofden, (double) conf); IJ.log("FLimit = " + (float) flim); if (flim == Double.NaN && flim < 1.0) { IJ.showMessage("Invalid Limiting F Value"); return false; } double truespacing = Math.abs(params[errindex] * spacing); double[][] c2plot = erclass.geterrors( params, fixes, constraints, tempdata, weights, flim, truespacing, errindex); IJ.log("upper limit = " + c2plot[1][0] + " lower limit = " + c2plot[0][0]); IJ.log( "upper error = " + (c2plot[1][0] - params[errindex]) + " lower error = " + (params[errindex] - c2plot[0][0])); int templength = c2plot[0].length; float[][] c2plotf = new float[2][templength - 1]; for (int i = 0; i < (templength - 1); i++) { c2plotf[0][i] = (float) c2plot[0][i + 1]; c2plotf[1][i] = (float) c2plot[1][i + 1]; } new PlotWindow4("c2 plot", labels[errindex], "Chi^2", c2plotf[0], c2plotf[1]).draw(); } else { StringBuffer sb = new StringBuffer(); sb.append("Trial\t"); for (int i = 0; i < labels.length; i++) { if (fixes[i] == 0) sb.append(labels[i] + "\t"); } sb.append("chi^2"); tw = new TextWindow("Monte Carlo Results", sb.toString(), "", 400, 400); redirect = true; monte_carlo_errors_v2 erclass = new monte_carlo_errors_v2(this, 0.0001, 50, false, 0.1); double[][] errors = erclass.geterrors(params, fixes, constraints, tempdata, weights, ntrials); sb = new StringBuffer(); sb.append("StDev\t"); for (int i = 0; i < errors.length; i++) { float[] ferr = new float[errors[0].length]; for (int j = 0; j < ferr.length; j++) ferr[j] = (float) errors[i][j]; float stdev = jstatistics.getstatistic("StDev", ferr, null); sb.append("" + stdev); if (i < (errors.length - 1)) sb.append("\t"); } tw.append(sb.toString()); redirect = false; } return true; }