Ejemplo n.º 1
0
  @Override
  public List<IBool> checkConsistency(IModel model) {
    if (!lazy_scheduling) {
      return Collections.emptyList();
    } else {
      List<IBool> constraints = new ArrayList<>();
      IConstraintNetwork network = solver.getConstraintNetwork();
      final Map<IObject, Collection<IFormula>> formulas = getFormulas(model);

      IStaticCausalGraph causal_graph = solver.getStaticCausalGraph();
      if (!closed_batteries
          && solver
              .getCurrentNode()
              .getFlaws()
              .stream()
              .map(
                  flaw -> {
                    if (flaw instanceof IGoal) {
                      return causal_graph.getNode(((IGoal) flaw).getFormula().getType());
                    } else if (flaw instanceof IFact) {
                      return causal_graph.getNode(((IFact) flaw).getFormula().getType());
                    } else if (flaw instanceof IDisjunctionFlaw) {
                      return causal_graph.getNode(((IDisjunctionFlaw) flaw).getDisjunction());
                    } else if (flaw instanceof IPreferenceFlaw) {
                      return causal_graph.getNode(((IPreferenceFlaw) flaw).getPreference());
                    } else {
                      throw new AssertionError(
                          "Flaw " + flaw.getClass().getName() + " is supported yet..");
                    }
                  })
              .noneMatch(
                  node ->
                      causal_graph.existsPath(node, causal_graph.getNode(charge_predicate))
                          || causal_graph.existsPath(
                              node, causal_graph.getNode(consume_predicate)))) {
        // We need a resolver in order to re-open the resource when backtracking
        solver
            .getCurrentNode()
            .addResolver(
                new IResolver() {
                  private boolean resolved = false;

                  @Override
                  public double getKnownCost() {
                    return 0;
                  }

                  @Override
                  public void resolve() {
                    assert !resolved;

                    // Let's close the batteries
                    closed_batteries = true;
                    resolved = true;
                  }

                  @Override
                  public boolean isResolved() {
                    return resolved;
                  }

                  @Override
                  public void retract() {
                    assert resolved;
                    closed_batteries = false;
                    resolved = false;
                  }
                });
      }

      if (closed_batteries) {
        instances.forEach(
            battery -> {
              Collection<IFormula> c_formulas = formulas.get(battery);
              BatteryTimeline timeline = new BatteryTimeline(solver, model, battery, c_formulas);
              for (int i = 0; i < timeline.values.size(); i++) {
                // <editor-fold defaultstate="collapsed" desc="battery overcharge">
                if (model.evaluate(
                    network.gt(timeline.values.get(i).max_amount, timeline.capacity))) {
                  // We have a battery overcharge so we need to anticipate consumptions to charges
                  Collection<IFormula> good_charges = new ArrayList<>(c_formulas.size());
                  Collection<IFormula> good_consumptions = new ArrayList<>(c_formulas.size());
                  for (IFormula f : c_formulas) {
                    switch (f.getType().getName()) {
                      case CHARGE_PREDICATE_NAME:
                        if (model.evaluate(
                            network.leq(
                                (INumber) f.get(Constants.START),
                                network.newReal(timeline.pulses.get(i).toString())))) {
                          // Charges that affect current overcharge are all those that start before
                          // this timeline value
                          good_charges.add(f);
                        }
                        break;
                      case CONSUME_PREDICATE_NAME:
                        if (model.evaluate(
                            network.geq(
                                (INumber) f.get(Constants.END),
                                network.newReal(timeline.pulses.get(i + 1).toString())))) {
                          // Consumptions that might resolve the current overcharge are all those
                          // that end after this timeline value
                          good_consumptions.add(f);
                        }
                        break;
                      default:
                        throw new AssertionError(f.getType().getName());
                    }
                  }
                  List<IBool> or = new ArrayList<>(good_charges.size() * good_consumptions.size());
                  good_consumptions.forEach(
                      (cons) -> {
                        good_charges.forEach(
                            (charge) -> {
                              or.add(
                                  network.leq(
                                      cons.get(Constants.END), charge.get(Constants.START)));
                              or.add(network.not(cons.getScope().eq(charge.getScope())));
                            });
                      });
                  or.add(network.geq(battery.get(CAPACITY), timeline.values.get(i).max_amount));
                  constraints.add(network.or(or.toArray(new IBool[or.size()])));
                }
                // </editor-fold>
                // <editor-fold defaultstate="collapsed" desc="battery overconsumption">
                if (model.evaluate(
                    network.lt(timeline.values.get(i).min_amount, network.newReal("0")))) {
                  // We have a battery overconsumption so we need to anticipate charges to
                  // consumption
                  Collection<IFormula> good_charges = new ArrayList<>(c_formulas.size());
                  Collection<IFormula> good_consumptions = new ArrayList<>(c_formulas.size());
                  for (IFormula f : c_formulas) {
                    switch (f.getType().getName()) {
                      case CHARGE_PREDICATE_NAME:
                        if (model.evaluate(
                            network.geq(
                                (INumber) f.get(Constants.END),
                                network.newReal(timeline.pulses.get(i + 1).toString())))) {
                          // Charges that might resolve the current overconsumption are all those
                          // that end after this timeline value
                          good_charges.add(f);
                        }
                        break;
                      case CONSUME_PREDICATE_NAME:
                        if (model.evaluate(
                            network.leq(
                                (INumber) f.get(Constants.START),
                                network.newReal(timeline.pulses.get(i).toString())))) {
                          // Consumptions that affect current overconsumption are all those that
                          // start before this timeline value
                          good_consumptions.add(f);
                        }
                        break;
                      default:
                        throw new AssertionError(f.getType().getName());
                    }
                  }
                  List<IBool> or = new ArrayList<>(good_charges.size() * good_consumptions.size());
                  good_consumptions.forEach(
                      (cons) -> {
                        good_charges.forEach(
                            (charge) -> {
                              or.add(
                                  network.leq(
                                      charge.get(Constants.END), cons.get(Constants.START)));
                              or.add(network.not(charge.getScope().eq(cons.getScope())));
                            });
                      });
                  or.add(network.leq(network.newReal("0"), timeline.values.get(i).min_amount));
                  constraints.add(network.or(or.toArray(new IBool[or.size()])));
                }
                // </editor-fold>
              }

              if (timeline.values.isEmpty()
                  ? model.evaluate(network.not(timeline.initial_amount.eq(timeline.final_amount)))
                  : model.evaluate(
                      network.not(
                          timeline
                              .values
                              .get(timeline.values.size() - 1)
                              .final_amount
                              .eq(timeline.final_amount)))) {
                // The initial amount plus the sum of charges and consumptions is not equal to the
                // final amount
                final List<INumber> sum = new ArrayList<>(c_formulas.size() + 1);
                sum.add(battery.get(INITIAL_AMOUNT));
                sum.addAll(
                    c_formulas
                        .stream()
                        .map(
                            f -> {
                              switch (f.getType().getName()) {
                                case CHARGE_PREDICATE_NAME:
                                  return f.get(C_AMOUNT);
                                case CONSUME_PREDICATE_NAME:
                                  return network.negate((INumber) f.get(AMOUNT));
                                default:
                                  throw new AssertionError(f.getType().getName());
                              }
                            })
                        .collect(Collectors.toList()));

                final List<IBool> or = new ArrayList<>();
                c_formulas.forEach(
                    formula -> {
                      or.add(network.not(battery.eq(formula.getScope())));
                    });
                instances
                    .stream()
                    .filter(instance -> (instance != battery))
                    .forEach(
                        instance -> {
                          formulas
                              .get(instance)
                              .forEach(
                                  formula -> {
                                    or.add(battery.eq(formula.getScope()));
                                  });
                        });
                if (sum.size() == 1) {
                  or.add(network.eq(sum.get(0), (INumber) battery.get(FINAL_AMOUNT)));
                } else {
                  or.add(
                      network.eq(
                          network.add(sum.toArray(new INumber[sum.size()])),
                          (INumber) battery.get(FINAL_AMOUNT)));
                }

                constraints.add(network.or(or.toArray(new IBool[or.size()])));
              }
            });
      }

      return constraints;
    }
  }
Ejemplo n.º 2
0
  @Override
  public void extractLandmarks() {
    candidates.clear();
    landmarks.clear();
    rpgs.clear();

    Set<IStaticCausalGraph.INode> nodes =
        causal_graph.getNodes().stream().collect(Collectors.toSet());
    // We define the initial state ..
    Set<IStaticCausalGraph.IPredicateNode> init_state =
        nodes
            .stream()
            .filter(node -> node instanceof IStaticCausalGraph.IPredicateNode)
            .map(node -> (IStaticCausalGraph.IPredicateNode) node)
            .flatMap(
                predicate ->
                    predicate
                        .getPredicate()
                        .getInstances()
                        .stream()
                        .map(instance -> (IFormula) instance)
                        .filter(formula -> formula.getFormulaState() == FormulaState.Active))
            .map(formula -> causal_graph.getNode(formula.getType()))
            .collect(Collectors.toSet());
    // .. and the goal state
    Set<IStaticCausalGraph.IPredicateNode> goals =
        nodes
            .stream()
            .filter(node -> node instanceof IStaticCausalGraph.IPredicateNode)
            .map(node -> (IStaticCausalGraph.IPredicateNode) node)
            .flatMap(
                predicate ->
                    predicate
                        .getPredicate()
                        .getInstances()
                        .stream()
                        .map(instance -> (IFormula) instance)
                        .filter(formula -> formula.getFormulaState() == FormulaState.Inactive)
                        .map(formula -> causal_graph.getNode(formula.getType()))
                        .filter(node -> !init_state.contains(node)))
            .collect(Collectors.toSet());

    // We add high level goals to initial landmark candidates
    goals
        .stream()
        .filter(node -> !init_state.contains(node))
        .forEach(node -> candidates.add(new Landmark(node)));

    // Main landmark extraction procedure loop
    while (!candidates.isEmpty()) {
      // The landmark candidate to analyze
      ILandmark candidate = candidates.stream().findAny().get();

      // We remove the landmark candidate from the candidates..
      candidates.remove(candidate);
      // .. and we add it to the landmarks
      landmarks.put(candidate, new HashSet<>());

      // These are the (disjunctive) causal preconditions of the first achievers..
      Set<Set<IStaticCausalGraph.INode>> first_achievers_preconditions = new HashSet<>();
      candidate
          .getNodes()
          .forEach(node -> first_achievers_preconditions.addAll(getPreconditions(node)));
      // We compute the relaxed planning graph excluding the candidate ..
      RelaxedPlanningGraph rpg = new RelaxedPlanningGraph(solver, candidate.getNodes());
      rpg.extract();
      rpg.propagate();
      rpgs.put(candidate, rpg);
      // .. and extract the causal preconditions of the first achievers according to the relaxed
      // planning graph
      // specifically, we remove those causal preconditions which are not reachable according to the
      // relaxed planning graph without the candidate
      first_achievers_preconditions.removeIf(
          preconditions ->
              preconditions.stream().anyMatch(pre -> Double.isInfinite(rpg.level(pre))));

      // We compute the intersection of the preconditions (all of them must be true..)
      Set<IStaticCausalGraph.INode> intersection =
          new HashSet<>(first_achievers_preconditions.stream().findAny().get());
      first_achievers_preconditions.forEach(
          conjunction -> {
            intersection.retainAll(conjunction);
          });
      intersection.removeIf(node -> init_state.contains(node));
      if (!intersection.isEmpty()) {
        // We remove from candidates those which are strictly worst than the current ones..
        candidates.removeIf(
            c ->
                c.getNodes().size() > 1
                    && intersection.stream().anyMatch(lm -> c.getNodes().contains(lm)));
        // We remove from landmarks those which are strictly worst than the current ones..
        landmarks
            .entrySet()
            .removeIf(
                c ->
                    c.getKey().getNodes().size() > 1
                        && intersection
                            .stream()
                            .anyMatch(lm -> c.getKey().getNodes().contains(lm)));
        // We add new candidates to candidates (if they are not already in candidates nor in
        // landmarks..)
        intersection
            .stream()
            .filter(
                node ->
                    candidates.stream().noneMatch(c -> c.getNodes().contains(node))
                        && landmarks
                            .entrySet()
                            .stream()
                            .noneMatch(c -> c.getKey().getNodes().contains(node)))
            .forEach(node -> candidates.add(new Landmark(node)));
      }

      // We compute a disjunctive landmark with oddments.. (at least one of them must be true..)
      Set<IStaticCausalGraph.INode> symmetric_difference =
          first_achievers_preconditions
              .stream()
              .flatMap(
                  conjunction -> conjunction.stream().filter(node -> !intersection.contains(node)))
              .collect(Collectors.toSet());
      if (!symmetric_difference.isEmpty()
          && symmetric_difference.stream().noneMatch(node -> init_state.contains(node))) {
        // We remove from candidates those which are strictly worst than the current disjunctive
        // landmark..
        candidates.removeIf(
            c ->
                c.getNodes().containsAll(symmetric_difference)
                    && c.getNodes().size() > symmetric_difference.size());
        // We remove from landmarks those which are strictly worst than the current disjunctive
        // landmark..
        landmarks
            .entrySet()
            .removeIf(
                c ->
                    c.getKey().getNodes().containsAll(symmetric_difference)
                        && c.getKey().getNodes().size() > symmetric_difference.size());
        // We consider the current disjunctive landmark only if there are not better candidates nor
        // better landmarks..
        if (candidates.stream().noneMatch(c -> symmetric_difference.containsAll(c.getNodes()))
            && landmarks
                .entrySet()
                .stream()
                .noneMatch(c -> symmetric_difference.containsAll(c.getKey().getNodes()))) {
          // We can add the disjunctive landmark to candidates
          candidates.add(new Landmark(symmetric_difference));
        }
      }
    }

    // We compute natural orders between landmarks..
    ILandmark[] lms = landmarks.keySet().stream().toArray(ILandmark[]::new);
    for (int i = 0; i < lms.length; i++) {
      if (lms[i].getNodes().size() == 1) {
        // We extract orderings between unary landmarks..
        RelaxedPlanningGraph c_rpg = rpgs.get(lms[i]);
        for (int j = i + 1; j < lms.length; j++) {
          if (lms[i].getNodes().size() == 1
              && lms[j]
                  .getNodes()
                  .stream()
                  .allMatch(node -> Double.isInfinite(c_rpg.level(node)))) {
            // there is a natural order between landmarks lms[i] and lms[j]
            landmarks.get(lms[i]).add(lms[j]);
          }
        }
      }
    }
  }