Ejemplo n.º 1
0
 // Conversion Options
 void conversions() {
   double[] weights = ColorProcessor.getWeightingFactors();
   boolean weighted = !(weights[0] == 1d / 3d && weights[1] == 1d / 3d && weights[2] == 1d / 3d);
   // boolean weighted = !(Math.abs(weights[0]-1d/3d)<0.0001 && Math.abs(weights[1]-1d/3d)<0.0001
   // && Math.abs(weights[2]-1d/3d)<0.0001);
   GenericDialog gd = new GenericDialog("Conversion Options");
   gd.addCheckbox("Scale when converting", ImageConverter.getDoScaling());
   String prompt = "Weighted RGB conversions";
   if (weighted)
     prompt +=
         " (" + IJ.d2s(weights[0]) + "," + IJ.d2s(weights[1]) + "," + IJ.d2s(weights[2]) + ")";
   gd.addCheckbox(prompt, weighted);
   gd.showDialog();
   if (gd.wasCanceled()) return;
   ImageConverter.setDoScaling(gd.getNextBoolean());
   Prefs.weightedColor = gd.getNextBoolean();
   if (!Prefs.weightedColor) ColorProcessor.setWeightingFactors(1d / 3d, 1d / 3d, 1d / 3d);
   else if (Prefs.weightedColor && !weighted)
     ColorProcessor.setWeightingFactors(0.299, 0.587, 0.114);
   return;
 }
Ejemplo n.º 2
0
  void Mean(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) {
    // See: Image Processing Learning Resourches HIPR2
    // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
    ImagePlus Meanimp;
    ImageProcessor ip = imp.getProcessor(), ipMean;
    int c_value = 0;
    byte object;
    byte backg;

    if (par1 != 0) {
      IJ.log("Mean: changed c_value from :" + c_value + "  to:" + par1);
      c_value = (int) par1;
    }

    if (doIwhite) {
      object = (byte) 0xff;
      backg = (byte) 0;
    } else {
      object = (byte) 0;
      backg = (byte) 0xff;
    }

    Meanimp = duplicateImage(ip);
    ImageConverter ic = new ImageConverter(Meanimp);
    ic.convertToGray32();

    ipMean = Meanimp.getProcessor();
    RankFilters rf = new RankFilters();
    rf.rank(ipMean, radius, rf.MEAN); // Mean
    // Meanimp.show();
    byte[] pixels = (byte[]) ip.getPixels();
    float[] mean = (float[]) ipMean.getPixels();

    for (int i = 0; i < pixels.length; i++)
      pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] - c_value)) ? object : backg;
    // imp.updateAndDraw();
    return;
  }
Ejemplo n.º 3
0
  void Sauvola(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) {
    // Sauvola recommends K_VALUE = 0.5 and R_VALUE = 128.
    // This is a modification of Niblack's thresholding method.
    // Sauvola J. and Pietaksinen M. (2000) "Adaptive Document Image Binarization"
    // Pattern Recognition, 33(2): 225-236
    // http://www.ee.oulu.fi/mvg/publications/show_pdf.php?ID=24
    // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines
    // This version uses a circular local window, instead of a rectagular one

    ImagePlus Meanimp, Varimp;
    ImageProcessor ip = imp.getProcessor(), ipMean, ipVar;
    double k_value = 0.5;
    double r_value = 128;
    byte object;
    byte backg;

    if (par1 != 0) {
      IJ.log("Sauvola: changed k_value from :" + k_value + "  to:" + par1);
      k_value = par1;
    }

    if (par2 != 0) {
      IJ.log("Sauvola: changed r_value from :" + r_value + "  to:" + par2);
      r_value = par2;
    }

    if (doIwhite) {
      object = (byte) 0xff;
      backg = (byte) 0;
    } else {
      object = (byte) 0;
      backg = (byte) 0xff;
    }

    Meanimp = duplicateImage(ip);
    ImageConverter ic = new ImageConverter(Meanimp);
    ic.convertToGray32();

    ipMean = Meanimp.getProcessor();
    RankFilters rf = new RankFilters();
    rf.rank(ipMean, radius, rf.MEAN); // Mean
    // Meanimp.show();
    Varimp = duplicateImage(ip);
    ic = new ImageConverter(Varimp);
    ic.convertToGray32();
    ipVar = Varimp.getProcessor();
    rf.rank(ipVar, radius, rf.VARIANCE); // Variance
    // Varimp.show();
    byte[] pixels = (byte[]) ip.getPixels();
    float[] mean = (float[]) ipMean.getPixels();
    float[] var = (float[]) ipVar.getPixels();

    for (int i = 0; i < pixels.length; i++)
      pixels[i] =
          ((int) (pixels[i] & 0xff)
                  > (int) (mean[i] * (1.0 + k_value * ((Math.sqrt(var[i]) / r_value) - 1.0))))
              ? object
              : backg;
    // imp.updateAndDraw();
    return;
  }
Ejemplo n.º 4
0
  void Phansalkar(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) {
    // This is a modification of Sauvola's thresholding method to deal with low contrast images.
    // Phansalskar N. et al. Adaptive local thresholding for detection of nuclei in diversity
    // stained
    // cytology images.International Conference on Communications and Signal Processing (ICCSP),
    // 2011,
    // 218 - 220.
    // In this method, the threshold t = mean*(1+p*exp(-q*mean)+k*((stdev/r)-1))
    // Phansalkar recommends k = 0.25, r = 0.5, p = 2 and q = 10. In this plugin, k and r are the
    // parameters 1 and 2 respectively, but the values of p and q are fixed.
    //
    // Implemented from Phansalkar's paper description by G. Landini
    // This version uses a circular local window, instead of a rectagular one

    ImagePlus Meanimp, Varimp, Orimp;
    ImageProcessor ip = imp.getProcessor(), ipMean, ipVar, ipOri;
    double k_value = 0.25;
    double r_value = 0.5;
    double p_value = 2.0;
    double q_value = 10.0;
    byte object;
    byte backg;

    if (par1 != 0) {
      IJ.log("Phansalkar: changed k_value from :" + k_value + "  to:" + par1);
      k_value = par1;
    }

    if (par2 != 0) {
      IJ.log("Phansalkar: changed r_value from :" + r_value + "  to:" + par2);
      r_value = par2;
    }

    if (doIwhite) {
      object = (byte) 0xff;
      backg = (byte) 0;
    } else {
      object = (byte) 0;
      backg = (byte) 0xff;
    }

    Meanimp = duplicateImage(ip);
    ContrastEnhancer ce = new ContrastEnhancer();
    ce.stretchHistogram(Meanimp, 0.0);
    ImageConverter ic = new ImageConverter(Meanimp);
    ic.convertToGray32();
    ipMean = Meanimp.getProcessor();
    ipMean.multiply(1.0 / 255);

    Orimp = duplicateImage(ip);
    ce.stretchHistogram(Orimp, 0.0);
    ic = new ImageConverter(Orimp);
    ic.convertToGray32();
    ipOri = Orimp.getProcessor();
    ipOri.multiply(1.0 / 255); // original to compare
    // Orimp.show();

    RankFilters rf = new RankFilters();
    rf.rank(ipMean, radius, rf.MEAN); // Mean

    // Meanimp.show();
    Varimp = duplicateImage(ip);
    ce.stretchHistogram(Varimp, 0.0);
    ic = new ImageConverter(Varimp);
    ic.convertToGray32();
    ipVar = Varimp.getProcessor();
    ipVar.multiply(1.0 / 255);

    rf.rank(ipVar, radius, rf.VARIANCE); // Variance
    ipVar.sqr(); // SD

    // Varimp.show();
    byte[] pixels = (byte[]) ip.getPixels();
    float[] ori = (float[]) ipOri.getPixels();
    float[] mean = (float[]) ipMean.getPixels();
    float[] sd = (float[]) ipVar.getPixels();

    for (int i = 0; i < pixels.length; i++)
      pixels[i] =
          ((ori[i])
                  > (mean[i]
                      * (1.0
                          + p_value * Math.exp(-q_value * mean[i])
                          + k_value * ((sd[i] / r_value) - 1.0))))
              ? object
              : backg;
    // imp.updateAndDraw();
    return;
  }
Ejemplo n.º 5
0
  void Niblack(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) {
    // Niblack recommends K_VALUE = -0.2 for images with black foreground
    // objects, and K_VALUE = +0.2 for images with white foreground objects.
    //  Niblack W. (1986) "An introduction to Digital Image Processing" Prentice-Hall.
    // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines
    // This version uses a circular local window, instead of a rectagular one

    ImagePlus Meanimp, Varimp;
    ImageProcessor ip = imp.getProcessor(), ipMean, ipVar;
    double k_value;
    int c_value = 0;

    byte object;
    byte backg;

    if (doIwhite) {
      k_value = 0.2;
      object = (byte) 0xff;
      backg = (byte) 0;
    } else {
      k_value = -0.2;
      object = (byte) 0;
      backg = (byte) 0xff;
    }

    if (par1 != 0) {
      IJ.log("Niblack: changed k_value from :" + k_value + "  to:" + par1);
      k_value = par1;
    }

    if (par2 != 0) {
      IJ.log(
          "Niblack: changed c_value from :"
              + c_value
              + "  to:"
              + par2); // requested feature, not in original
      c_value = (int) par2;
    }

    Meanimp = duplicateImage(ip);
    ImageConverter ic = new ImageConverter(Meanimp);
    ic.convertToGray32();

    ipMean = Meanimp.getProcessor();
    RankFilters rf = new RankFilters();
    rf.rank(ipMean, radius, rf.MEAN); // Mean
    // Meanimp.show();
    Varimp = duplicateImage(ip);
    ic = new ImageConverter(Varimp);
    ic.convertToGray32();
    ipVar = Varimp.getProcessor();
    rf.rank(ipVar, radius, rf.VARIANCE); // Variance
    // Varimp.show();
    byte[] pixels = (byte[]) ip.getPixels();
    float[] mean = (float[]) ipMean.getPixels();
    float[] var = (float[]) ipVar.getPixels();

    for (int i = 0; i < pixels.length; i++)
      pixels[i] =
          ((int) (pixels[i] & 0xff) > (int) (mean[i] + k_value * Math.sqrt(var[i]) - c_value))
              ? object
              : backg;
    // imp.updateAndDraw();
    return;
  }