/** Test of learn method, of class CategoryBalancedBaggingLearner. */
  @Test
  public void testLearn() {
    CategoryBalancedBaggingLearner<Vector, Boolean> instance =
        new CategoryBalancedBaggingLearner<Vector, Boolean>();
    instance.setLearner(new Perceptron());
    instance.setRandom(random);
    instance.setMaxIterations(5);
    instance.setPercentToSample(0.5);

    assertNull(instance.getResult());

    ArrayList<InputOutputPair<Vector, Boolean>> data =
        new ArrayList<InputOutputPair<Vector, Boolean>>();
    VectorFactory<?> vectorFactory = VectorFactory.getDefault();

    for (int i = 0; i < 100; i++) {
      data.add(
          new DefaultInputOutputPair<Vector, Boolean>(
              vectorFactory.createUniformRandom(14, 0.0, 1.0, random), true));
    }
    for (int i = 0; i < 2; i++) {
      data.add(
          new DefaultInputOutputPair<Vector, Boolean>(
              vectorFactory.createUniformRandom(14, -1.0, 0.0, random), false));
    }

    WeightedVotingCategorizerEnsemble<Vector, Boolean, ?> result = instance.learn(data);
    assertSame(result, instance.getResult());

    assertEquals(5, result.getMembers().size());
    for (WeightedValue<?> member : result.getMembers()) {
      assertEquals(1.0, member.getWeight(), 0.0);
      assertNotNull(member.getValue());
      assertTrue(member.getValue() instanceof LinearBinaryCategorizer);
    }
  }
    /**
     * Creates a new instance of LaplaceDistribution using a weighted Maximum Likelihood estimate
     * based on the given data
     *
     * @param data Weighed pairs of data (first is data, second is weight) that was generated by
     *     some unknown LaplaceDistribution distribution
     * @return Maximum Likelihood UnivariateGaussian that generated the data
     */
    @Override
    public LaplaceDistribution learn(
        final Collection<? extends WeightedValue<? extends Double>> data) {

      double mean = 0.0;
      double weightSum = 0.0;
      for (WeightedValue<? extends Double> weightedValue : data) {
        double weight = weightedValue.getWeight();
        if (weight != 0.0) {
          double value = weightedValue.getValue().doubleValue();
          mean += weight * value;
          weightSum += weight;
        }
      }

      if (weightSum != 0.0) {
        mean /= weightSum;
      }

      // Now compute the shape factor
      double shape = 0.0;
      for (WeightedValue<? extends Number> weightedValue : data) {
        double weight = weightedValue.getWeight();
        if (weight != 0.0) {
          double value = weightedValue.getValue().doubleValue();
          double delta = value - mean;
          shape += weight * Math.abs(delta);
        }
      }

      if (weightSum != 0.0) {
        shape /= weightSum;
      }

      return new LaplaceDistribution(mean, shape);
    }