Ejemplo n.º 1
0
  /// Performs one pattern-presentation of stochastic gradient descent, and dynamically tunes the
  // learning rate
  void doSomeTraining() {

    // Present a sample of beliefs and corresponding contentment for training
    int index = rand.nextInt(trainSize);
    model.regularize(learningRate, 0.000001);
    model.trainIncremental(samples.row(index), contentment.row(index), learningRate);
  }
Ejemplo n.º 2
0
 /// Marshals this model to a JSON DOM.
 JSONObject marshal() {
   JSONObject obj = new JSONObject();
   obj.put("model", model.marshal());
   obj.put("samples", samples.marshal());
   obj.put("contentment", contentment.marshal());
   obj.put("trainPos", trainPos);
   obj.put("trainSize", trainSize);
   obj.put("trainIters", trainIters);
   obj.put("learningRate", learningRate);
   return obj;
 }
Ejemplo n.º 3
0
  /// Refines this model based on feedback from the teacher
  void trainIncremental(double[] sample_beliefs, double sample_contentment) {

    // Buffer the samples
    double[] dest = samples.row(trainPos);
    if (sample_beliefs.length != dest.length) throw new IllegalArgumentException("size mismatch");
    for (int i = 0; i < dest.length; i++) dest[i] = sample_beliefs[i];
    contentment.row(trainPos)[0] = sample_contentment;
    trainPos++;
    trainSize = Math.max(trainSize, trainPos);
    if (trainPos >= samples.rows()) trainPos = 0;

    // Do a few iterations of stochastic gradient descent
    int iters = Math.min(trainIters, trainSize);
    for (int i = 0; i < iters; i++) doSomeTraining();
  }