Ejemplo n.º 1
0
 public float getCurrentLengthA() {
   final Vec2 p = pool.popVec2();
   m_bodyA.getWorldPointToOut(m_localAnchorA, p);
   p.subLocal(m_groundAnchorA);
   float length = p.length();
   pool.pushVec2(1);
   return length;
 }
Ejemplo n.º 2
0
  public float getLength2() {
    final Vec2 p = pool.popVec2();
    m_bodyB.getWorldPointToOut(m_localAnchorB, p);
    p.subLocal(m_groundAnchorB);

    float len = p.length();
    pool.pushVec2(1);
    return len;
  }
Ejemplo n.º 3
0
  @Override
  public boolean solvePositionConstraints(final SolverData data) {
    final Rot qA = pool.popRot();
    final Rot qB = pool.popRot();
    final Vec2 rA = pool.popVec2();
    final Vec2 rB = pool.popVec2();
    final Vec2 uA = pool.popVec2();
    final Vec2 uB = pool.popVec2();
    final Vec2 temp = pool.popVec2();
    final Vec2 PA = pool.popVec2();
    final Vec2 PB = pool.popVec2();

    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;

    qA.set(aA);
    qB.set(aB);

    Rot.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rot.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);

    uA.set(cA).addLocal(rA).subLocal(m_groundAnchorA);
    uB.set(cB).addLocal(rB).subLocal(m_groundAnchorB);

    float lengthA = uA.length();
    float lengthB = uB.length();

    if (lengthA > 10.0f * Settings.linearSlop) {
      uA.mulLocal(1.0f / lengthA);
    } else {
      uA.setZero();
    }

    if (lengthB > 10.0f * Settings.linearSlop) {
      uB.mulLocal(1.0f / lengthB);
    } else {
      uB.setZero();
    }

    // Compute effective mass.
    float ruA = Vec2.cross(rA, uA);
    float ruB = Vec2.cross(rB, uB);

    float mA = m_invMassA + m_invIA * ruA * ruA;
    float mB = m_invMassB + m_invIB * ruB * ruB;

    float mass = mA + m_ratio * m_ratio * mB;

    if (mass > 0.0f) {
      mass = 1.0f / mass;
    }

    float C = m_constant - lengthA - m_ratio * lengthB;
    float linearError = MathUtils.abs(C);

    float impulse = -mass * C;

    PA.set(uA).mulLocal(-impulse);
    PB.set(uB).mulLocal(-m_ratio * impulse);

    cA.x += m_invMassA * PA.x;
    cA.y += m_invMassA * PA.y;
    aA += m_invIA * Vec2.cross(rA, PA);
    cB.x += m_invMassB * PB.x;
    cB.y += m_invMassB * PB.y;
    aB += m_invIB * Vec2.cross(rB, PB);

    //    data.positions[m_indexA].c.set(cA);
    data.positions[m_indexA].a = aA;
    //    data.positions[m_indexB].c.set(cB);
    data.positions[m_indexB].a = aB;

    pool.pushRot(2);
    pool.pushVec2(7);

    return linearError < Settings.linearSlop;
  }
Ejemplo n.º 4
0
  @Override
  public void initVelocityConstraints(final SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;

    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;

    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;

    final Rot qA = pool.popRot();
    final Rot qB = pool.popRot();
    final Vec2 temp = pool.popVec2();

    qA.set(aA);
    qB.set(aB);

    // Compute the effective masses.
    Rot.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rot.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);

    m_uA.set(cA).addLocal(m_rA).subLocal(m_groundAnchorA);
    m_uB.set(cB).addLocal(m_rB).subLocal(m_groundAnchorB);

    float lengthA = m_uA.length();
    float lengthB = m_uB.length();

    if (lengthA > 10f * Settings.linearSlop) {
      m_uA.mulLocal(1.0f / lengthA);
    } else {
      m_uA.setZero();
    }

    if (lengthB > 10f * Settings.linearSlop) {
      m_uB.mulLocal(1.0f / lengthB);
    } else {
      m_uB.setZero();
    }

    // Compute effective mass.
    float ruA = Vec2.cross(m_rA, m_uA);
    float ruB = Vec2.cross(m_rB, m_uB);

    float mA = m_invMassA + m_invIA * ruA * ruA;
    float mB = m_invMassB + m_invIB * ruB * ruB;

    m_mass = mA + m_ratio * m_ratio * mB;

    if (m_mass > 0.0f) {
      m_mass = 1.0f / m_mass;
    }

    if (data.step.warmStarting) {

      // Scale impulses to support variable time steps.
      m_impulse *= data.step.dtRatio;

      // Warm starting.
      final Vec2 PA = pool.popVec2();
      final Vec2 PB = pool.popVec2();

      PA.set(m_uA).mulLocal(-m_impulse);
      PB.set(m_uB).mulLocal(-m_ratio * m_impulse);

      vA.x += m_invMassA * PA.x;
      vA.y += m_invMassA * PA.y;
      wA += m_invIA * Vec2.cross(m_rA, PA);
      vB.x += m_invMassB * PB.x;
      vB.y += m_invMassB * PB.y;
      wB += m_invIB * Vec2.cross(m_rB, PB);

      pool.pushVec2(2);
    } else {
      m_impulse = 0.0f;
    }
    //    data.velocities[m_indexA].v.set(vA);
    data.velocities[m_indexA].w = wA;
    //    data.velocities[m_indexB].v.set(vB);
    data.velocities[m_indexB].w = wB;

    pool.pushVec2(1);
    pool.pushRot(2);
  }