/** * Calculate dx, dy values for a point * * @param t : parameter * @param delta : where to store dx, dy values */ private void calcTangentAt(double t, FPoint2 delta) { final boolean db = false; if (db) { System.out.println("calcTangentAt " + t); } t = toInt(t); if (db) { System.out.println(" flipped=" + flipped() + " ti=" + t); } double a = toW2.get(0, 0), b = toW2.get(0, 1), c = toW2.get(0, 2); double d = toW2.get(1, 0), e = toW2.get(1, 1), f = toW2.get(1, 2); if (db) { System.out.println(" a=" + a + " b=" + b + " c=" + c + "\n d=" + d + " e=" + e + " f=" + f); } double rt = Polyn.sqrt(A + B * t * t); double dx = a * B * t / rt + b; double dy = d * B * t / rt + e; if (flipped()) { dx = -dx; dy = -dy; } if (db) { System.out.println(" dx=" + dx + "\n dy=" + dy); System.out.println(" ratio=" + (dy / dx)); } delta.setLocation(dx, dy); }
/** * Calculate a point on the hyperbola * * @param t : parameter in internal space (after flipping has occurred) * @param dest : where to store the calculated point */ private FPoint2 calcPointInternal(double t, FPoint2 dest) { final boolean db = false; if (!valid) throw new FPError("calcPoint of invalid hyperbola"); // Tools.ASSERT(valid, "calcPoint of invalid hyperbola"); // final FPoint2 work = new FPoint2(); // // work.setLocation(Polyn.sqrt(A + t * t * B), t); dest = toW2.apply(Polyn.sqrt(A + t * t * B), t, dest); // // if (dest == null) // dest = new FPoint2(); // Matrix.apply(toW2, work, dest); if (db) { System.out.println( "calcPoint t=" + Tools.f(toExt(t)) // + " armsp=" + work + " world=" + dest); } return dest; }
/** * Calculate a point on the hyperbola, leave in arm space * * @param t : parameter, after conversion to 'internal' value * @return point in arm space */ private FPoint2 calcPointInArmSpace0(double t) { return new FPoint2(Polyn.sqrt(A + t * t * B), t); }
/** * Constructor * * @param f1 FPoint2 * @param f2 FPoint2 * @param pt FPoint2, or null for bisector */ private void construct(FPoint2 f1, FPoint2 f2, FPoint2 pt) { // userData[LEFT] = new DArray(); // userData[RIGHT] =new DArray(); final boolean db = false; if (db) { System.out.println("Hyperbola constructor\n f1=" + f1 + "\n f2=" + f2 + "\n pt=" + pt); } boolean bisector = (pt == null); initializeVisibleSegments(); // if point on arm is closer to f2 than f1, swap f1 & f2. if (!bisector && FPoint2.distanceSquared(f1, pt) > FPoint2.distanceSquared(f2, pt)) { flipped = true; } this.foci[RIGHT] = new FPoint2(f1); this.foci[LEFT] = new FPoint2(f2); if (!bisector) { this.pt = new FPoint2(pt); } double fociDist = FPoint2.distance(f1, f2); if (fociDist == 0) { throw new FPError("Hyperbola foci are same point"); } c = fociDist * .5; // calculate the translation of the hyperbola away from // standard position. FPoint2 rFocus = getFocus(0), lFocus = getFocus(1); origin = new FPoint2(.5 * (rFocus.x + lFocus.x), .5 * (rFocus.y + lFocus.y)); // calculate the angle of rotation of the hyperbola away // from the standard position. double theta = Math.atan2(rFocus.y - lFocus.y, rFocus.x - lFocus.x); Matrix fromCenterInW = Matrix.getTranslate(origin, true); Matrix rotToE = Matrix.getRotate(-theta); toE2 = rotToE; Matrix.mult(toE2, fromCenterInW, toE2); // calculate inverse toW2 = toE2.invert(null); // Matrix toCenterInW = Matrix.translationMatrix(origin, false); // Matrix rotToW = Matrix.getRotate2D(theta); // // toW2 = toCenterInW; // Matrix.mult(toW2, rotToW, toW2); // Tools.warn("just invert matrix here"); // if (bisector) { valid = true; } else { // get the arm point in hyperbola space. FPoint2 workPt = toE2.apply(pt, null); double xs = workPt.x * workPt.x; double cs = c * c; Polyn q = new Polyn(1, -(cs + xs + workPt.y * workPt.y), cs * xs); if (db) { System.out.println("a2 quadratic:\n" + q); } final DArray qsoln = new DArray(); q.solve(qsoln); if (db) { Streams.out.println(qsoln); } double val = q.c(1) * -.5; int ql = qsoln.size(); if (ql >= 1) { val = qsoln.getDouble(0); } // choose the root that is less than c*c. if (ql == 2) { if (val > qsoln.getDouble(1)) { val = qsoln.getDouble(1); if (db) { System.out.println(" two roots, choosing smaller."); } } } if (db) { System.out.println(" root chosen=" + val); } a = Polyn.sqrt(val); A = a * a; B = A / (c * c - A); } valid = true; if (db) { System.out.println(" ==> " + this); } }