Ejemplo n.º 1
0
  private double entropy(Map<String, String> specifiedAttributes) {
    double totalExamples = records.count();
    double positiveExamples = records.countPositive(specifiedAttributes);
    double negativeExamples = records.countNegative(specifiedAttributes);

    return -nlog2(positiveExamples / totalExamples) - nlog2(negativeExamples / totalExamples);
  }
Ejemplo n.º 2
0
 private double entropy(
     String attribute, String decision, Map<String, String> specifiedAttributes) {
   double totalExamples = records.count(attribute, decision, specifiedAttributes);
   double positiveExamples = records.countPositive(attribute, decision, specifiedAttributes);
   double negativeExamples = records.countNegative(attribute, decision, specifiedAttributes);
   // logger.info("positiveExamples is --> {}.", positiveExamples);
   // logger.info("negativeExamples is --> {}.", negativeExamples);
   // logger.info("totalExamples is --> {}.", totalExamples);
   if (positiveExamples == 0 || negativeExamples == 0 || totalExamples == 0) return 0;
   return -nlog2(positiveExamples / totalExamples) - nlog2(negativeExamples / totalExamples);
 }
Ejemplo n.º 3
0
  /**
   * Returns the next attribute to be chosen.
   *
   * <p>chosenAttributes represents the decision path from the root attribute to the node under
   * consideration. usedAttributes is the set of all attributes that have been incorporated into the
   * tree prior to this call to nextAttribute(), even if the attributes were not used in the path to
   * the node under consideration.
   *
   * <p>Results are undefined if records.count() == 0.
   */
  public Attribute nextAttribute(Map<String, String> chosenAttributes, Set<String> usedAttributes) {
    double currentGain = 0.0, bestGain = 0.0;
    String bestAttribute = "";

    /*
     * If there are no positive records for the already chosen attributes,
     * then return a false classifier leaf. If no negative records,
     * then return a true classifier leaf.
     */
    if (records.countPositive(chosenAttributes) == 0) return new Attribute(false);
    else if (records.countNegative(chosenAttributes) == 0) return new Attribute(true);

    logger.info(
        "Choosing attribute out of {} remaining attributes.",
        remainingAttributes(usedAttributes).size());
    logger.info("Already chosen attributes/decisions are {}.", chosenAttributes);

    for (String attribute : remainingAttributes(usedAttributes)) {
      // for each remaining attribute, determine the information gain of using it
      // to choose among the records selected by the chosenAttributes
      // if none give any information gain, return a leaf attribute,
      // otherwise return the found attribute as a non-leaf attribute
      currentGain = informationGain(attribute, chosenAttributes);
      logger.info("Evaluating attribute {}, information gain is {}", attribute, currentGain);
      if (currentGain > bestGain) {
        bestAttribute = attribute;
        bestGain = currentGain;
      }
    }

    // If no attribute gives information gain, generate leaf attribute.
    // Leaf is true if there are any true classifiers.
    // If there is at least one negative example, then the information gain
    // would be greater than 0.
    if (bestGain == 0.0) {
      boolean classifier = records.countPositive(chosenAttributes) > 0;
      logger.warn("Creating new leaf attribute with classifier {}.", classifier);
      return new Attribute(classifier);
    } else {
      logger.info("Creating new non-leaf attribute {}.", bestAttribute);
      return new Attribute(bestAttribute);
    }
  }