public BranchGroup createSceneGraph(URL url) { try { Loader loader = new com.sun.j3d.loaders.objectfile.ObjectFile(); Scene scene = loader.load(url); BranchGroup bg = scene.getSceneGroup(); System.out.println(bg); TransformGroup[] views = scene.getViewGroups(); if (views != null) { for (int i = 0; i < views.length; i++) { System.out.print(views[i]); } if (views.length > 0) viewStart = views[0]; } return bg; } catch (Exception ex) { // in case there was a problem, print the stack out ex.printStackTrace(); // System.out.println(ex); add("South", new Label(ex.toString())); System.out.println("URL: " + url); BranchGroup bg = new BranchGroup(); bg.addChild(new ColorCube()); System.out.println(bg); return bg; } }
public BranchGroup createSceneGraph() { // Create the root of the branch graph BranchGroup objRoot = new BranchGroup(); // Create the TransformGroup node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at run time. Add it to // the root of the subgraph. TransformGroup objTrans = new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objRoot.addChild(objTrans); // Create a simple Shape3D node; add it to the scene graph. objTrans.addChild(new ColorCube(0.4)); // Create a new Behavior object that will perform the // desired operation on the specified transform and add // it into the scene graph. Transform3D yAxis = new Transform3D(); Alpha rotationAlpha = new Alpha(-1, 4000); RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, objTrans, yAxis, 0.0f, (float) Math.PI * 1.0f); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); rotator.setSchedulingBounds(bounds); objRoot.addChild(rotator); // Have Java 3D perform optimizations on this scene graph. objRoot.compile(); return objRoot; }
// In this method, the objects for the scene are generated and added to // the SimpleUniverse. public void createSceneGraph(SimpleUniverse su) { // *** The root of the graph containing the scene (with a cube and a sphere). *** BranchGroup theScene = new BranchGroup(); // Generate an Appearance. Color3f ambientColourShaded = new Color3f(0.0f, 0.4f, 0.4f); Color3f emissiveColourShaded = new Color3f(0.0f, 0.0f, 0.0f); Color3f diffuseColourShaded = new Color3f(0.0f, 0.7f, 0.7f); Color3f specularColourShaded = new Color3f(0.0f, 0.5f, 0.5f); float shininessShaded = 20.0f; Appearance shadedApp = new Appearance(); shadedApp.setMaterial( new Material( ambientColourShaded, emissiveColourShaded, diffuseColourShaded, specularColourShaded, shininessShaded)); float r = 0.3f; // The radius of the sphere. float boxHL = 0.7f * r; // Half the vertex length of the cube. float shift = 3.0f * r; // Distance between cube and sphere. // *** The sphere and its transformation group *** Sphere s = new Sphere(r, Sphere.GENERATE_NORMALS, 100, shadedApp); Transform3D tfSphere = new Transform3D(); tfSphere.setTranslation(new Vector3f(-0.95f + r, 0.0f, 0.0f)); TransformGroup tgSphere = new TransformGroup(tfSphere); tgSphere.addChild(s); theScene.addChild(tgSphere); // *** The cube and its transformation group *** Box b2 = new Box(boxHL, boxHL, boxHL, shadedApp); Transform3D tfBox2 = new Transform3D(); tfBox2.setTranslation(new Vector3f(-0.95f + r + shift, 0.0f, 0.0f)); Transform3D rotation = new Transform3D(); rotation.rotY(Math.PI / 4); Transform3D rotationX = new Transform3D(); rotationX.rotX(Math.PI / 6); rotation.mul(rotationX); tfBox2.mul(rotation); TransformGroup tgBox2 = new TransformGroup(tfBox2); tgBox2.addChild(b2); theScene.addChild(tgBox2); // Generate a white background. Background bg = new Background(new Color3f(1.0f, 1.0f, 1.0f)); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), Double.MAX_VALUE); bg.setApplicationBounds(bounds); theScene.addChild(bg); theScene.compile(); // Add the scene to the universe. su.addBranchGraph(theScene); }
public World() { universe = new VirtualUniverse(); locale = new Locale(universe); viewGroup = new BranchGroup(); objGroup = new BranchGroup(); viewGroup.setCapability(Group.ALLOW_CHILDREN_EXTEND); objGroup.setCapability(Group.ALLOW_CHILDREN_EXTEND); }
/** * Simple algorithm to add or remove an edge from the selection Ideas: 1. Use one shape per quad * => easy, but can become very fast too big to fit in memory. => pb: flicker when adding / * removing because the scene is detached 2. Use only one shape, modify geometry TODO: pre-create * an empty shape to avoid initial flicker * * @param on * @param p * @param u * @param v * @param groupIdx2 */ protected void toggleSelectedEdge(boolean on, SelectionEdge se) { if (on) { // add the given edge to the list if (edgeSelection.contains(se)) return; // already in edgeSelection.add(se); } else { // remove the given edge from the list if (!edgeSelection.contains(se)) return; // not present edgeSelection.remove(se); if (edgeSelection.size() == 0) { LineArray la = (LineArray) edgeSelectionShape.getGeometry(); la.setValidVertexCount(0); return; } } // Use in-memory arrays instead of NIO because edgeSelection should not // be too big // => faster LineArray la = new LineArray( edgeSelection.size() * 2, GeometryArray.COORDINATES | GeometryArray.COLOR_3 | GeometryArray.BY_REFERENCE); double[] coords = new double[edgeSelection.size() * 2 * 3]; float[] colors = new float[edgeSelection.size() * 2 * 3]; for (int i = 0; i < coords.length; i += 6) { SelectionEdge edge = edgeSelection.get(i / 6); edge.updateCoords(grid, coords, i); edge.updateColors(colors, i); } la.setCoordRefDouble(coords); la.setColorRefFloat(colors); la.setCapability(GeometryArray.ALLOW_COUNT_WRITE); // update edgeSelection Shape with the new edgeSelection list if (edgeSelectionShape == null) { Appearance a = new Appearance(); // PolygonAttributes pa = new // PolygonAttributes(PolygonAttributes.POLYGON_LINE, // PolygonAttributes.CULL_NONE, 0); // pa.setPolygonOffset(1); // above edges // pa.setPolygonOffsetFactor(1); LineAttributes lat = new LineAttributes(); lat.setLineWidth(2.0f); lat.setLineAntialiasingEnable(true); a.setLineAttributes(lat); // a.setPolygonAttributes(pa); edgeSelectionShape = new Shape3D(la, a); edgeSelectionShape.setUserData(this); edgeSelectionShape.setPickable(false); edgeSelectionShape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE); edgeSelectionShape.setCapability(Shape3D.ALLOW_GEOMETRY_READ); BranchGroup bg = new BranchGroup(); bg.addChild(edgeSelectionShape); addChild(bg); } else edgeSelectionShape.setGeometry(la); }
// In this method, the objects for the scene are generated and added to // the SimpleUniverse. public void createSceneGraph(SimpleUniverse su) { // Create the root of the branch group for the scene. BranchGroup theScene = new BranchGroup(); // Generate an Appearance for the sphere. Color3f ambientColourSphere = new Color3f(0.2f, 0.2f, 0.2f); Color3f emissiveColourSphere = new Color3f(0.0f, 0.0f, 0.0f); Color3f diffuseColourSphere = new Color3f(0.6f, 0.6f, 0.6f); Color3f specularColourSphere = new Color3f(0.5f, 0.5f, 0.5f); float shininessSphere = 20.0f; Appearance sphereApp = new Appearance(); sphereApp.setMaterial( new Material( ambientColourSphere, emissiveColourSphere, diffuseColourSphere, specularColourSphere, shininessSphere)); // n spheres with radius r will be shown. int n = 5; float r = 0.15f; float shift = 2 * r + 0.05f; // The distance between the centres of the spheres. // Arrays for the sphere, their transformations and their transformation groups // transformation groups (for positioning). Sphere[] spheres = new Sphere[n]; TransformGroup[] tg = new TransformGroup[n]; Transform3D[] tf = new Transform3D[n]; // Generate the sphere, their transformations and their // transformation groups. Add everyting to the scene. for (int i = 0; i < n; i++) { spheres[i] = new Sphere(r, Sphere.GENERATE_NORMALS, 4 + i * i * i, sphereApp); tf[i] = new Transform3D(); tf[i].setTranslation(new Vector3f(-0.95f + r + shift * i, 0.0f, 0.0f)); tg[i] = new TransformGroup(tf[i]); tg[i].addChild(spheres[i]); theScene.addChild(tg[i]); } // Generate a white background. Background bg = new Background(new Color3f(1.0f, 1.0f, 1.0f)); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0); bg.setApplicationBounds(bounds); theScene.addChild(bg); theScene.compile(); // Add the scene to the universe. su.addBranchGraph(theScene); }
private BranchGroup setApperancePackInBranchGroup(Shape3D shape, Node handle) { shape.setUserData(this); shape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE); BranchGroup bg = new BranchGroup(); bg.setCapability(BranchGroup.ALLOW_DETACH); bg.addChild(handle); bg.compile(); return bg; }
/** * Simple algorithm to add or remove a quad from the selection Ideas: 1. Use one shape per quad => * easy, but can become very fast too big to fit in memory. => pb: flicker when adding / removing * because the scene is detached 2. Use only one shape, modify geometry TODO: pre-create an empty * shape to avoid initial flicker * * @param on * @param p * @param u * @param v * @param groupIdx2 */ protected void toggleSelectedQuad(boolean on, SelectionQuad sq) { LOGGER.finest("on=" + on + " selectionQuad=" + sq); if (on) { // add the given quad to the list if (selection.contains(sq)) return; // already in selection.add(sq); } else { // remove the given quad from the list if (!selection.contains(sq)) return; // not present selection.remove(sq); if (selection.size() == 0) { QuadArray qa = (QuadArray) selectionShape.getGeometry(); qa.setValidVertexCount(0); return; } } // Use in-memory arrays instead of NIO because selection should not be // too big // => faster QuadArray qa = new QuadArray( selection.size() * 4, GeometryArray.COORDINATES | GeometryArray.COLOR_3 | GeometryArray.BY_REFERENCE); float[] coords = new float[selection.size() * 4 * 3]; float[] colors = new float[selection.size() * 4 * 3]; for (int i = 0; i < coords.length; i += 12) { SelectionQuad quad = selection.get(i / 12); quad.updateCoords(grid, coords, i); quad.updateColors(colors, i); } qa.setCoordRefFloat(coords); qa.setColorRefFloat(colors); qa.setCapability(GeometryArray.ALLOW_COUNT_WRITE); // update selection Shape with the new selection list if (selectionShape == null) { Appearance a = new Appearance(); PolygonAttributes pa = new PolygonAttributes(PolygonAttributes.POLYGON_FILL, PolygonAttributes.CULL_NONE, 0); pa.setPolygonOffset(0.5f); // between faces and edges pa.setPolygonOffsetFactor(0.5f); a.setPolygonAttributes(pa); selectionShape = new Shape3D(qa, a); selectionShape.setUserData(this); selectionShape.setPickable(false); selectionShape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE); selectionShape.setCapability(Shape3D.ALLOW_GEOMETRY_READ); BranchGroup bg = new BranchGroup(); bg.addChild(selectionShape); addChild(bg); } else selectionShape.setGeometry(qa); }
private void labelAxes() // Place numbers along the X- and Z-axes at the integer positions { Vector3d pt = new Vector3d(); for (int i = -FLOOR_LEN / 2; i <= FLOOR_LEN / 2; i++) { pt.x = i; floorBG.addChild(makeText(pt, "" + i)); // along x-axis } pt.x = 0; for (int i = -FLOOR_LEN / 2; i <= FLOOR_LEN / 2; i++) { pt.z = i; floorBG.addChild(makeText(pt, "" + i)); // along z-axis } } // end of labelAxes()
// Some light is added to the scene here. public void addLight(SimpleUniverse su) { BranchGroup bgLight = new BranchGroup(); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), Double.MAX_VALUE); // Directional light. Color3f lightColour = new Color3f(1.0f, 1.0f, 1.0f); Vector3f lightDir = new Vector3f(1.0f, -1.0f, -1.0f); DirectionalLight light = new DirectionalLight(lightColour, lightDir); light.setInfluencingBounds(bounds); bgLight.addChild(light); // Ambient light. Color3f ambientLightColour = new Color3f(0.5f, 0.5f, 0.5f); AmbientLight ambLight = new AmbientLight(ambientLightColour); ambLight.setInfluencingBounds(bounds); bgLight.addChild(ambLight); su.addBranchGraph(bgLight); }
public CheckerFloor() // create tiles, add origin marker, then the axes labels { ArrayList blueCoords = new ArrayList(); ArrayList greenCoords = new ArrayList(); floorBG = new BranchGroup(); boolean isBlue; for (int z = -FLOOR_LEN / 2; z <= (FLOOR_LEN / 2) - 1; z++) { isBlue = (z % 2 == 0) ? true : false; // set colour for new row for (int x = -FLOOR_LEN / 2; x <= (FLOOR_LEN / 2) - 1; x++) { if (isBlue) createCoords(x, z, blueCoords); else createCoords(x, z, greenCoords); isBlue = !isBlue; } } floorBG.addChild(new ColouredTiles(blueCoords, blue)); floorBG.addChild(new ColouredTiles(greenCoords, green)); addOriginMarker(); labelAxes(); } // end of CheckerFloor()
// Directional light rotating around the scene and some ambient light. public void addLight(SimpleUniverse su) { BranchGroup bgLight = new BranchGroup(); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), Double.MAX_VALUE); // Directional light (to be rotated). Color3f lightColour = new Color3f(1.0f, 1.0f, 1.0f); Vector3f lightDir = new Vector3f(0.0f, 0.0f, -1.0f); DirectionalLight light = new DirectionalLight(lightColour, lightDir); light.setInfluencingBounds(bounds); // The transformation group for the directional light and its rotation. TransformGroup tfmLight = new TransformGroup(); tfmLight.addChild(light); // The Alpha for the rotation. Alpha alphaLight = new Alpha(-1, 4000); // The rotation RotationInterpolator rot = new RotationInterpolator( alphaLight, tfmLight, new Transform3D(), 0.0f, (float) Math.PI * 2); rot.setSchedulingBounds(bounds); tfmLight.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); tfmLight.addChild(rot); bgLight.addChild(tfmLight); // Ambient light. Color3f ambientLightColour = new Color3f(0.5f, 0.5f, 0.5f); AmbientLight ambLight = new AmbientLight(ambientLightColour); ambLight.setInfluencingBounds(bounds); bgLight.addChild(ambLight); su.addBranchGraph(bgLight); }
private void addOriginMarker() // A red square centered at (0,0,0), of length 0.5 { // points created counter-clockwise, a bit above the floor Point3f p1 = new Point3f(-0.25f, 0.01f, 0.25f); Point3f p2 = new Point3f(0.25f, 0.01f, 0.25f); Point3f p3 = new Point3f(0.25f, 0.01f, -0.25f); Point3f p4 = new Point3f(-0.25f, 0.01f, -0.25f); ArrayList oCoords = new ArrayList(); oCoords.add(p1); oCoords.add(p2); oCoords.add(p3); oCoords.add(p4); floorBG.addChild(new ColouredTiles(oCoords, medRed)); } // end of addOriginMarker();
public ObjectViewer(URL url) { setLayout(new BorderLayout()); Canvas3D canvas3D = new Canvas3D(SimpleUniverse.getPreferredConfiguration()); add("Center", canvas3D); BoundingSphere bounds = new BoundingSphere(new Point3d(), 1000); BranchGroup root = new BranchGroup(); BranchGroup scene = createSceneGraph(url); scene.setBoundsAutoCompute(true); System.out.println(scene.getBounds()); BoundingSphere sceneBounds = new BoundingSphere(scene.getBounds()); SimpleUniverse univ = new SimpleUniverse(canvas3D); ViewingPlatform view = univ.getViewingPlatform(); view.setNominalViewingTransform(); Transform3D t = new Transform3D(); TransformGroup viewTransform = view.getViewPlatformTransform(); t.set(new Vector3d(0, 0, 3 * sceneBounds.getRadius())); viewTransform.setTransform(t); BranchGroup lights = new BranchGroup(); Light light = new AmbientLight(); light.setInfluencingBounds(bounds); lights.addChild(light); light = new DirectionalLight(); light.setInfluencingBounds(bounds); lights.addChild(light); root.addChild(lights); TransformGroup tg = new TransformGroup(); tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); tg.addChild(scene); root.addChild(tg); MouseRotate mouse = new MouseRotate(); mouse.setTransformGroup(tg); mouse.setSchedulingBounds(bounds); root.addChild(mouse); MouseZoom mousezoom = new MouseZoom(); mousezoom.setTransformGroup(tg); mousezoom.setSchedulingBounds(bounds); root.addChild(mousezoom); Background background = new Background(1, 1, 1); background.setApplicationBounds(bounds); root.addChild(background); root.compile(); univ.addBranchGraph(root); }
public void activate() { viewGroup.compile(); objGroup.compile(); locale.addBranchGraph(viewGroup); locale.addBranchGraph(objGroup); }
public void addChild(Node obj) { objGroup.addChild(obj); }
public void addBehavior(Behavior behavior) { viewGroup.addChild(behavior); }
public void addViewer(Viewer viewer) { viewGroup.addChild(viewer.getRoot()); }