Beispiel #1
0
  @Override
  protected Frame predictScoreImpl(Frame orig, Frame adaptedFr, String destination_key) {
    Frame adaptFrm = new Frame(adaptedFr);
    for (int i = 0; i < _parms._k; i++)
      adaptFrm.add("PC" + String.valueOf(i + 1), adaptFrm.anyVec().makeZero());

    new MRTask() {
      @Override
      public void map(Chunk chks[]) {
        double tmp[] = new double[_output._names.length];
        double preds[] = new double[_parms._k];
        for (int row = 0; row < chks[0]._len; row++) {
          double p[] = score0(chks, row, tmp, preds);
          for (int c = 0; c < preds.length; c++) chks[_output._names.length + c].set(row, p[c]);
        }
      }
    }.doAll(adaptFrm);

    // Return the projection into principal component space
    int x = _output._names.length, y = adaptFrm.numCols();
    Frame f =
        adaptFrm.extractFrame(
            x, y); // this will call vec_impl() and we cannot call the delete() below just yet

    f =
        new Frame(
            (null == destination_key ? Key.make() : Key.make(destination_key)),
            f.names(),
            f.vecs());
    DKV.put(f);
    makeMetricBuilder(null).makeModelMetrics(this, orig);
    return f;
  }
Beispiel #2
0
  // GLRM scoring is data imputation based on feature domains using reconstructed XY (see Udell
  // (2015), Section 5.3)
  private Frame reconstruct(
      Frame orig,
      Frame adaptedFr,
      Key destination_key,
      boolean save_imputed,
      boolean reverse_transform) {
    final int ncols = _output._names.length;
    assert ncols == adaptedFr.numCols();
    String prefix = "reconstr_";

    // Need [A,X,P] where A = adaptedFr, X = loading frame, P = imputed frame
    // Note: A is adapted to original training frame, P has columns shuffled so cats come before
    // nums!
    Frame fullFrm = new Frame(adaptedFr);
    Frame loadingFrm = DKV.get(_output._representation_key).get();
    fullFrm.add(loadingFrm);
    String[][] adaptedDomme = adaptedFr.domains();
    for (int i = 0; i < ncols; i++) {
      Vec v = fullFrm.anyVec().makeZero();
      v.setDomain(adaptedDomme[i]);
      fullFrm.add(prefix + _output._names[i], v);
    }
    GLRMScore gs = new GLRMScore(ncols, _parms._k, save_imputed, reverse_transform).doAll(fullFrm);

    // Return the imputed training frame
    int x = ncols + _parms._k, y = fullFrm.numCols();
    Frame f =
        fullFrm.extractFrame(
            x, y); // this will call vec_impl() and we cannot call the delete() below just yet

    f = new Frame((null == destination_key ? Key.make() : destination_key), f.names(), f.vecs());
    DKV.put(f);
    gs._mb.makeModelMetrics(
        GLRMModel.this, orig, null, null); // save error metrics based on imputed data
    return f;
  }