public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); double width = 1.4; int size_cache = 10; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); RealFeatures feats_train = new RealFeatures(traindata_real); RealFeatures feats_test = new RealFeatures(testdata_real); NormOne preproc = new NormOne(); preproc.init(feats_train); feats_train.add_preprocessor(preproc); feats_train.apply_preprocessor(); feats_test.add_preprocessor(preproc); feats_test.apply_preprocessor(); Chi2Kernel kernel = new Chi2Kernel(feats_train, feats_train, width, size_cache); DoubleMatrix km_train = kernel.get_kernel_matrix(); kernel.init(feats_train, feats_test); DoubleMatrix km_test = kernel.get_kernel_matrix(); System.out.println(km_train.toString()); System.out.println(km_test.toString()); }
public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_multiclass.dat"); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); RealFeatures subkfeats1_train = new RealFeatures(traindata_real); RealFeatures subkfeats1_test = new RealFeatures(testdata_real); GaussianKernel subkernel = new GaussianKernel(10, width); feats_train.append_feature_obj(subkfeats1_train); feats_test.append_feature_obj(subkfeats1_test); kernel.append_kernel(subkernel); RealFeatures subkfeats2_train = new RealFeatures(traindata_real); RealFeatures subkfeats2_test = new RealFeatures(testdata_real); LinearKernel subkernel2 = new LinearKernel(); feats_train.append_feature_obj(subkfeats2_train); feats_test.append_feature_obj(subkfeats2_test); kernel.append_kernel(subkernel2); RealFeatures subkfeats3_train = new RealFeatures(traindata_real); RealFeatures subkfeats3_test = new RealFeatures(testdata_real); PolyKernel subkernel3 = new PolyKernel(10, 2); feats_train.append_feature_obj(subkfeats3_train); feats_test.append_feature_obj(subkfeats3_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); Labels labels = new Labels(trainlab); MKLMultiClass mkl = new MKLMultiClass(C, kernel, labels); mkl.set_epsilon(epsilon); mkl.set_mkl_epsilon(epsilon); mkl.set_mkl_norm(mkl_norm); mkl.train(); kernel.init(feats_train, feats_test); DoubleMatrix out = mkl.apply().get_labels(); modshogun.exit_shogun(); }
public static void main(String argv[]) { boolean reverse = false; modshogun.init_shogun_with_defaults(); int order = 3; int gap = 4; String[] fm_train_dna = Load.load_dna("../data/fm_train_dna.dat"); StringCharFeatures charfeat = new StringCharFeatures(fm_train_dna, DNA); StringWordFeatures feats = new StringWordFeatures(charfeat.get_alphabet()); feats.obtain_from_char(charfeat, order - 1, order, gap, reverse); PositionalPWM ppwm = new PositionalPWM(); ppwm.set_sigma(5.0); ppwm.set_mean(10.0); DoubleMatrix pwm = new DoubleMatrix( new double[][] { {0.0, 0.5, 0.1, 1.0}, {0.0, 0.5, 0.5, 0.0}, {1.0, 0.0, 0.4, 0.0}, {0.0, 0.0, 0.0, 0.0} }); ppwm.set_pwm(logi(pwm)); ppwm.compute_w(20); DoubleMatrix w = ppwm.get_w(); modshogun.exit_shogun(); }
public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); RealFeatures feats_train = new RealFeatures(traindata_real); RealFeatures feats_test = new RealFeatures(testdata_real); EuclideanDistance distance = new EuclideanDistance(feats_train, feats_train); DoubleMatrix dm_train = distance.get_distance_matrix(); distance.init(feats_train, feats_test); DoubleMatrix dm_test = distance.get_distance_matrix(); System.out.println(dm_train.toString()); System.out.println(dm_test.toString()); }
public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); DoubleMatrix ground_truth = Load.load_labels("../data/label_train_twoclass.dat"); DoubleMatrix predicted = randn(1, ground_truth.getLength()); Labels ground_truth_labels = new Labels(ground_truth); Labels predicted_labels = new Labels(predicted); ROCEvaluation evaluator = new ROCEvaluation(); evaluator.evaluate(predicted_labels, ground_truth_labels); System.out.println(evaluator.get_ROC()); System.out.println(evaluator.get_auROC()); modshogun.exit_shogun(); }
public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); DoubleMatrix ground_truth = Load.load_labels("../data/label_train_twoclass.dat"); DoubleMatrix predicted = randn(1, ground_truth.getLength()); Labels ground_truth_labels = new Labels(ground_truth); Labels predicted_labels = new Labels(predicted); ContingencyTableEvaluation base_evaluator = new ContingencyTableEvaluation(); base_evaluator.evaluate(predicted_labels, ground_truth_labels); AccuracyMeasure evaluator1 = new AccuracyMeasure(); double accuracy = evaluator1.evaluate(predicted_labels, ground_truth_labels); ErrorRateMeasure evaluator2 = new ErrorRateMeasure(); double errorrate = evaluator2.evaluate(predicted_labels, ground_truth_labels); BALMeasure evaluator3 = new BALMeasure(); double bal = evaluator3.evaluate(predicted_labels, ground_truth_labels); WRACCMeasure evaluator4 = new WRACCMeasure(); double wracc = evaluator4.evaluate(predicted_labels, ground_truth_labels); F1Measure evaluator5 = new F1Measure(); double f1 = evaluator5.evaluate(predicted_labels, ground_truth_labels); CrossCorrelationMeasure evaluator6 = new CrossCorrelationMeasure(); double crosscorrelation = evaluator6.evaluate(predicted_labels, ground_truth_labels); RecallMeasure evaluator7 = new RecallMeasure(); double recall = evaluator7.evaluate(predicted_labels, ground_truth_labels); PrecisionMeasure evaluator8 = new PrecisionMeasure(); double precision = evaluator8.evaluate(predicted_labels, ground_truth_labels); SpecificityMeasure evaluator9 = new SpecificityMeasure(); double specificity = evaluator9.evaluate(predicted_labels, ground_truth_labels); System.out.printf( "%f, %f, %f, %f, %f, %f, %f, %f, %f\n", accuracy, errorrate, bal, wracc, f1, crosscorrelation, recall, precision, specificity); modshogun.exit_shogun(); }
public static void main(String argv[]) { boolean reverse = false; modshogun.init_shogun_with_defaults(); int N = 1; int M = 512; double pseudo = 1e-5; int order = 3; int gap = 0; String[] fm_train_dna = Load.load_cubes("../data/fm_train_cube.dat"); StringCharFeatures charfeat = new StringCharFeatures(fm_train_dna, CUBE); StringWordFeatures feats = new StringWordFeatures(charfeat.get_alphabet()); feats.obtain_from_char(charfeat, order - 1, order, gap, reverse); HMM hmm = new HMM(feats, N, M, pseudo); hmm.train(); hmm.baum_welch_viterbi_train(BW_NORMAL); int num_examples = feats.get_num_vectors(); int num_param = hmm.get_num_model_parameters(); for (int i = 0; i < num_examples; i++) for (int j = 0; j < num_param; j++) { hmm.get_log_derivative(j, i); } int best_path = 0; int best_path_state = 0; for (int i = 0; i < num_examples; i++) { best_path += hmm.best_path(i); for (int j = 0; j < N; j++) best_path_state += hmm.get_best_path_state(i, j); } DoubleMatrix lik_example = hmm.get_log_likelihood(); double lik_sample = hmm.get_log_likelihood_sample(); modshogun.exit_shogun(); }
static ArrayList run(int para) { modshogun.init_shogun_with_defaults(); int k = para; init_random(17); DoubleMatrix fm_train = Load.load_numbers("../data/fm_train_real.dat"); RealFeatures feats_train = new RealFeatures(fm_train); EuclidianDistance distance = new EuclidianDistance(feats_train, feats_train); KMeans kmeans = new KMeans(k, distance); kmeans.train(); DoubleMatrix out_centers = kmeans.get_cluster_centers(); kmeans.get_radiuses(); ArrayList result = new ArrayList(); result.add(kmeans); result.add(out_centers); modshogun.exit_shogun(); return result; }