private void init(Graph<V, E> g, Set<V> vertexSet, Set<E> edgeSet) {
    // create a map between vertex value to its order(1st,2nd,etc)
    // "CAT"=1 "DOG"=2 "RHINO"=3

    this.mapVertexToOrder = new HashMap<V, Integer>(vertexSet.size());

    int counter = 0;
    for (V vertex : vertexSet) {
      mapVertexToOrder.put(vertex, new Integer(counter));
      counter++;
    }

    // create a friendlier representation of an edge
    // by order, like 2nd->3rd instead of B->A
    // use the map to convert vertex to order
    // on directed graph, edge A->B must be (A,B)
    // on undirected graph, edge A-B can be (A,B) or (B,A)

    this.labelsEdgesSet = new HashSet<LabelsEdge>(edgeSet.size());
    for (E edge : edgeSet) {
      V sourceVertex = g.getEdgeSource(edge);
      Integer sourceOrder = mapVertexToOrder.get(sourceVertex);
      int sourceLabel = sourceOrder.intValue();
      int targetLabel = (mapVertexToOrder.get(g.getEdgeTarget(edge))).intValue();

      LabelsEdge lablesEdge = new LabelsEdge(sourceLabel, targetLabel);
      this.labelsEdgesSet.add(lablesEdge);

      if (g instanceof UndirectedGraph<?, ?>) {
        LabelsEdge oppositeEdge = new LabelsEdge(targetLabel, sourceLabel);
        this.labelsEdgesSet.add(oppositeEdge);
      }
    }
  }
Beispiel #2
0
  /**
   * @param vertexNumber the number which identifies the vertex v in this order.
   * @return the identifying numbers of all vertices which are connected to v by an edge incoming to
   *     v.
   */
  public int[] getInEdges(int vertexNumber) {
    if (cacheEdges && (incomingEdges[vertexNumber] != null)) {
      return incomingEdges[vertexNumber];
    }

    V v = getVertex(vertexNumber);
    Set<E> edgeSet;

    if (graph instanceof DirectedGraph<?, ?>) {
      edgeSet = ((DirectedGraph<V, E>) graph).incomingEdgesOf(v);
    } else {
      edgeSet = graph.edgesOf(v);
    }

    int[] vertexArray = new int[edgeSet.size()];
    int i = 0;

    for (E edge : edgeSet) {
      V source = graph.getEdgeSource(edge), target = graph.getEdgeTarget(edge);
      vertexArray[i++] = mapVertexToOrder.get(source.equals(v) ? target : source);
    }

    if (cacheEdges) {
      incomingEdges[vertexNumber] = vertexArray;
    }

    return vertexArray;
  }
Beispiel #3
0
  public int[] getEdgeNumbers(E e) {
    V v1 = graph.getEdgeSource(e), v2 = graph.getEdgeTarget(e);

    int[] edge = new int[2];
    edge[0] = mapVertexToOrder.get(v1);
    edge[1] = mapVertexToOrder.get(v2);

    return edge;
  }
 private void markPath(V v, V child, V stem, Set<V> blossom) {
   while (!contracted.get(v).equals(stem)) {
     blossom.add(contracted.get(v));
     blossom.add(contracted.get(match.get(v)));
     path.put(v, child);
     child = match.get(v);
     v = path.get(match.get(v));
   }
 }
Beispiel #5
0
  /** @see Graph#getEdgeWeight */
  @Override
  public double getEdgeWeight(E e) {
    double weight;

    // Always return the value from the weight map first and
    // only pass the call through as a backup
    if (weightMap.containsKey(e)) {
      weight = weightMap.get(e);
    } else {
      weight = super.getEdgeWeight(e);
    }

    return weight;
  }
  /**
   * Runs the algorithm on the input graph and returns the match edge set.
   *
   * @return set of Edges
   */
  private Set<E> findMatch() {
    Set<E> result = new ArrayUnenforcedSet<>();
    match = new HashMap<>();
    path = new HashMap<>();
    contracted = new HashMap<>();

    for (V i : graph.vertexSet()) {
      // Any augmenting path should start with _exposed_ vertex
      // (vertex may not escape match-set being added once)
      if (!match.containsKey(i)) {
        // Match is maximal iff graph G contains no more augmenting paths
        V v = findPath(i);
        while (v != null) {
          V pv = path.get(v);
          V ppv = match.get(pv);
          match.put(v, pv);
          match.put(pv, v);
          v = ppv;
        }
      }
    }

    Set<V> seen = new HashSet<>();
    graph
        .vertexSet()
        .stream()
        .filter(v -> !seen.contains(v) && match.containsKey(v))
        .forEach(
            v -> {
              seen.add(v);
              seen.add(match.get(v));
              result.add(graph.getEdge(v, match.get(v)));
            });

    return result;
  }
 private V lowestCommonAncestor(V a, V b) {
   Set<V> seen = new HashSet<>();
   for (; ; ) {
     a = contracted.get(a);
     seen.add(a);
     if (!match.containsKey(a)) {
       break;
     }
     a = path.get(match.get(a));
   }
   for (; ; ) {
     b = contracted.get(b);
     if (seen.contains(b)) {
       return b;
     }
     b = path.get(match.get(b));
   }
 }
 private IntrusiveEdge getIntrusiveEdge(E e) {
   if (e instanceof IntrusiveEdge) {
     return (IntrusiveEdge) e;
   }
   return edgeMap.get(e);
 }
  private V findPath(V root) {
    Set<V> used = new HashSet<>();
    Queue<V> q = new ArrayDeque<>();

    // Expand graph back from its contracted state
    path.clear();
    contracted.clear();

    graph.vertexSet().forEach(vertex -> contracted.put(vertex, vertex));

    used.add(root);
    q.add(root);

    while (!q.isEmpty()) {
      V v = q.remove();

      for (E e : graph.edgesOf(v)) {
        V to = graph.getEdgeSource(e);

        if (to.equals(v)) {
          to = graph.getEdgeTarget(e);
        }

        if ((contracted.get(v).equals(contracted.get(to))) || to.equals(match.get(v))) {
          continue;
        }

        // Check whether we've hit a 'blossom'
        if ((to.equals(root)) || ((match.containsKey(to)) && (path.containsKey(match.get(to))))) {
          V stem = lowestCommonAncestor(v, to);

          Set<V> blossom = new HashSet<>();

          markPath(v, to, stem, blossom);
          markPath(to, v, stem, blossom);

          graph
              .vertexSet()
              .stream()
              .filter(i -> contracted.containsKey(i) && blossom.contains(contracted.get(i)))
              .forEach(
                  i -> {
                    contracted.put(i, stem);
                    if (!used.contains(i)) {
                      used.add(i);
                      q.add(i);
                    }
                  });

          // Check whether we've had hit a loop (of even length (!) presumably)
        } else if (!path.containsKey(to)) {
          path.put(to, v);

          if (!match.containsKey(to)) {
            return to;
          }

          to = match.get(to);

          used.add(to);
          q.add(to);
        }
      }
    }
    return null;
  }
Beispiel #10
0
 public int getVertexNumber(V v) {
   return mapVertexToOrder.get(v);
 }
 /**
  * Access the data stored for a seen vertex.
  *
  * @param vertex a vertex which has already been seen.
  * @return data associated with the seen vertex or <code>null</code> if no data was associated
  *     with the vertex. A <code>null</code> return can also indicate that the vertex was
  *     explicitly associated with <code>
  * null</code>.
  */
 protected D getSeenData(V vertex) {
   return seen.get(vertex);
 }
  /**
   * Compute the minimal triangulation of the graph. Implementation of Algorithm MCS-M+ as described
   * in Berry et al. (2010), DOI:10.3390/a3020197 <a href="http://www.mdpi.com/1999-4893/3/2/197">
   * http://www.mdpi.com/1999-4893/3/2/197</a>
   */
  private void computeMinimalTriangulation() {
    // initialize chordGraph with same vertices as graph
    chordalGraph = new SimpleGraph<>(graph.getEdgeFactory());
    for (V v : graph.vertexSet()) {
      chordalGraph.addVertex(v);
    }

    // initialize g' as subgraph of graph (same vertices and edges)
    final UndirectedGraph<V, E> gprime = copyAsSimpleGraph(graph);
    int s = -1;
    generators = new ArrayList<>();
    meo = new LinkedList<>();

    final Map<V, Integer> vertexLabels = new HashMap<>();
    for (V v : gprime.vertexSet()) {
      vertexLabels.put(v, 0);
    }
    for (int i = 1, n = graph.vertexSet().size(); i <= n; i++) {
      V v = getMaxLabelVertex(vertexLabels);
      LinkedList<V> Y = new LinkedList<>(Graphs.neighborListOf(gprime, v));

      if (vertexLabels.get(v) <= s) {
        generators.add(v);
      }

      s = vertexLabels.get(v);

      // Mark x reached and all other vertices of gprime unreached
      HashSet<V> reached = new HashSet<>();
      reached.add(v);

      // mark neighborhood of x reached and add to reach(label(y))
      HashMap<Integer, HashSet<V>> reach = new HashMap<>();

      // mark y reached and add y to reach
      for (V y : Y) {
        reached.add(y);
        addToReach(vertexLabels.get(y), y, reach);
      }

      for (int j = 0; j < graph.vertexSet().size(); j++) {
        if (!reach.containsKey(j)) {
          continue;
        }
        while (reach.get(j).size() > 0) {
          // remove a vertex y from reach(j)
          V y = reach.get(j).iterator().next();
          reach.get(j).remove(y);

          for (V z : Graphs.neighborListOf(gprime, y)) {
            if (!reached.contains(z)) {
              reached.add(z);
              if (vertexLabels.get(z) > j) {
                Y.add(z);
                E fillEdge = graph.getEdgeFactory().createEdge(v, z);
                fillEdges.add(fillEdge);
                addToReach(vertexLabels.get(z), z, reach);
              } else {
                addToReach(j, z, reach);
              }
            }
          }
        }
      }

      for (V y : Y) {
        chordalGraph.addEdge(v, y);
        vertexLabels.put(y, vertexLabels.get(y) + 1);
      }

      meo.addLast(v);
      gprime.removeVertex(v);
      vertexLabels.remove(v);
    }
  }