public Double getPercentageOriginalRows(UnionRelBase rel) {
    double numerator = 0.0;
    double denominator = 0.0;

    // Ignore rel.isDistinct() because it's the same as an aggregate.

    // REVIEW jvs 28-Mar-2006: The original Broadbase formula was broken.
    // It was multiplying percentage into the numerator term rather than
    // than dividing it out of the denominator term, which would be OK if
    // there weren't summation going on.  Probably the cause of the error
    // was the desire to avoid division by zero, which I don't know how to
    // handle so I punt, meaning we return a totally wrong answer in the
    // case where a huge table has been completely filtered away.

    for (RelNode input : rel.getInputs()) {
      double rowCount = RelMetadataQuery.getRowCount(input);
      double percentage = RelMetadataQuery.getPercentageOriginalRows(input);
      if (percentage != 0.0) {
        denominator += rowCount / percentage;
        numerator += rowCount;
      }
    }

    return quotientForPercentage(numerator, denominator);
  }
 // Ditto for getNonCumulativeCost
 public RelOptCost getCumulativeCost(RelNode rel) {
   RelOptCost cost = RelMetadataQuery.getNonCumulativeCost(rel);
   List<RelNode> inputs = rel.getInputs();
   for (RelNode input : inputs) {
     cost = cost.plus(RelMetadataQuery.getCumulativeCost(input));
   }
   return cost;
 }
  public Double getPercentageOriginalRows(JoinRelBase rel) {
    // Assume any single-table filter conditions have already
    // been pushed down.

    // REVIEW jvs 28-Mar-2006: As with aggregation, this is
    // oversimplified.

    // REVIEW jvs 28-Mar-2006:  need any special casing for SemiJoinRel?

    double left = RelMetadataQuery.getPercentageOriginalRows(rel.getLeft());

    double right = RelMetadataQuery.getPercentageOriginalRows(rel.getRight());

    return left * right;
  }
  public Double getPercentageOriginalRows(AggregateRelBase rel) {
    // REVIEW jvs 28-Mar-2006: The assumption here seems to be that
    // aggregation does not apply any filtering, so it does not modify the
    // percentage.  That's very much oversimplified.

    return RelMetadataQuery.getPercentageOriginalRows(rel.getChild());
  }
Beispiel #5
0
  // implement RelNode
  public RelOptCost computeSelfCost(RelOptPlanner planner) {
    double dRows = RelMetadataQuery.getRowCount(this);

    // Assume CPU is negligible since values are precomputed.
    double dCpu = 1;
    double dIo = 0;
    return planner.makeCost(dRows, dCpu, dIo);
  }
  // Catch-all rule when none of the others apply.
  public Double getPercentageOriginalRows(RelNode rel) {
    if (rel.getInputs().size() > 1) {
      // No generic formula available for multiple inputs.
      return null;
    }

    if (rel.getInputs().size() == 0) {
      // Assume no filtering happening at leaf.
      return 1.0;
    }

    RelNode child = rel.getInputs().get(0);

    Double childPercentage = RelMetadataQuery.getPercentageOriginalRows(child);
    if (childPercentage == null) {
      return null;
    }

    // Compute product of percentage filtering from this rel (assuming any
    // filtering is the effect of single-table filters) with the percentage
    // filtering performed by the child.
    Double relPercentage =
        quotientForPercentage(
            RelMetadataQuery.getRowCount(rel), RelMetadataQuery.getRowCount(child));
    if (relPercentage == null) {
      return null;
    }
    double percent = relPercentage * childPercentage;

    // this check is needed in cases where this method is called on a
    // physical rel
    if ((percent < 0.0) || (percent > 1.0)) {
      return null;
    }
    return relPercentage * childPercentage;
  }
Beispiel #7
0
 public RelOptCost computeSelfCost(RelOptPlanner planner) {
   double dRows = RelMetadataQuery.getRowCount(this);
   double dCpu = RelMetadataQuery.getRowCount(getChild()) * program.getExprCount();
   double dIo = 0;
   return planner.makeCost(dRows, dCpu, dIo);
 }