@Test
 public void testSameLabelsOutput() {
   MultiLayerNetwork network = new MultiLayerNetwork(getNetworkConf(40));
   network.init();
   network.setListeners(new ScoreIterationListener(1));
   network.fit(reshapeInput(data), data);
   Evaluation ev = eval(network);
   Assert.assertTrue(ev.f1() > 0.90);
 }
 /**
  * Returns the f1 score for the given examples. Think of this to be like a percentage right. The
  * higher the number the more it got right. This is on a scale from 0 to 1.
  *
  * @param examples te the examples to classify (one example in each row)
  * @param labels the true labels
  * @return the scores for each ndarray
  */
 public double f1Score(INDArray examples, INDArray labels) {
   Evaluation eval = new Evaluation();
   eval.eval(labels, labelProbabilities(examples));
   return eval.f1();
 }