/** * It launches the algorithm * * @param lanzar Chc execute the algorithm class * @param fich String file's name */ public void execute(Chc lanzar, String fich) { if (somethingWrong) { // We do not execute the program System.err.println( "An error was found, either the data-set have numerical values or missing values."); System.err.println("Aborting the program"); // We should not use the statement: System.exit(-1); } else { // We do here the algorithm's operations // nClasses = train.getnOutputs(); // Finally we should fill the training and test output files doOutput(this.train, this.outputTr, lanzar); doOutput(this.test, this.outputTst, lanzar); EscribeBCLing e = new EscribeBCLing(); e.write( fich, lanzar.getEc_tra(), lanzar.getEc_tst(), lanzar.getP().getE().base(), lanzar.getP()); System.out.println("Algorithm Finished"); } }
/** * It returns the algorithm regresion output given an input example * * @param example double[] The input example * @param lanzar * @return double the output generated by the algorithm */ private double regressionOutput(double[] example, Chc lanzar) { double output = 0.0; output = lanzar.getP().getE().base().FLC(example); // } // FLC(); /** * Here we should include the algorithm directives to generate the classification output from * the input example */ return output; }
/** * It returns the algorithm regresion output given an input example * * @param example double[] The input example * @param lanzar Chc the algorithm class * @return double the output generated by the algorithm */ private double regressionOutput(double[] example, Chc lanzar) { double output = 0.0; // for(int i=0;i<example.length;i++){ output = lanzar.getP().getE().base().FLC(example); /*fichero = "tunlatgcomunTRA.txt"; String sal2 = new String(""); sal= lanzar.Ectra()+"\n"; Fichero.escribeFichero(fichero, sal2); fichero = "tunlatgcomunTST.txt"; String sal3 = new String(""); sal= lanzar.Ectst()+"\n"; Fichero.escribeFichero(fichero, sal3); //} //FLC(); /** Here we should include the algorithm directives to generate the classification output from the input example */ return output; }