Beispiel #1
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      String[] items = value.toString().split(fieldDelimRegex);

      srcEntityId = items[0];
      trgEntityId = items[1];
      rank = Integer.parseInt(items[items.length - 1]);

      outKey.initialize();
      if (recordInOutput) {
        // include source and taraget record
        if (recLength == -1) {
          recLength = (items.length - 3) / 2;
          srcRecBeg = 2;
          srcRecEnd = trgRecBeg = 2 + recLength;
          trgRecEnd = trgRecBeg + recLength;
        }
        srcRec = org.chombo.util.Utility.join(items, srcRecBeg, srcRecEnd, fieldDelim);
        trgRec = org.chombo.util.Utility.join(items, trgRecBeg, trgRecEnd, fieldDelim);
        outKey.add(srcEntityId, srcRec, rank);
        outVal.set(trgEntityId + fieldDelim + trgRec + fieldDelim + items[items.length - 1]);
      } else {
        // only target entity id and distance
        outKey.add(srcEntityId, rank);
        outVal.set(trgEntityId + fieldDelim + items[items.length - 1]);
      }
      context.write(outKey, outVal);
    }
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      String[] items = value.toString().split(fieldDelim);
      eventType = Integer.parseInt(items[2]);
      timeStamp = Long.parseLong(items[3]);

      // user ID, item ID, event
      keyOut.initialize();
      keyOut.add(items[0], items[1], eventType);

      valOut.initialize();
      valOut.add(eventType, timeStamp);
      context.write(keyOut, valOut);
    }
Beispiel #3
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context)
     */
    protected void reduce(Tuple key, Iterable<Tuple> values, Context context)
        throws IOException, InterruptedException {
      sum = 0;
      count = 0;
      for (Tuple val : values) {
        count += val.getInt(0);
        sum += val.getInt(1);
      }
      avg = count > 0 ? sum / count : 0;

      stBld.delete(0, stBld.length());
      stBld.append(key.toString()).append(fieldDelim);
      stBld.append(count).append(fieldDelim).append(sum).append(fieldDelim).append(avg);
      outVal.set(stBld.toString());
      context.write(NullWritable.get(), outVal);
    }
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context)
     */
    protected void reduce(Tuple key, Iterable<Tuple> values, Context context)
        throws IOException, InterruptedException {
      if (stBld.length() > 0) {
        stBld.delete(0, stBld.length() - 1);
      }

      boolean first = true;
      count = 0;
      latestTimeStamp = 0;
      for (Tuple value : values) {
        eventType = value.getInt(0);
        timeStamp = value.getLong(1);
        if (first) {
          mostEngagingEventType = eventType;
          ++count;
          first = false;
        } else {
          // all occurences of the first event type
          if (eventType == mostEngagingEventType) {
            ++count;
          }
        }
        // latest time stamp
        if (timeStamp > latestTimeStamp) {
          latestTimeStamp = timeStamp;
        }
      }

      rating = ratingMapper.scoreForEvent(mostEngagingEventType, count);
      stBld
          .append(key.getString(0))
          .append(fieldDelim)
          .append(key.getString(1))
          .append(fieldDelim)
          .append(rating)
          .append(fieldDelim)
          .append(latestTimeStamp);
      if (outputDetail) {
        stBld.append(fieldDelim).append(mostEngagingEventType).append(fieldDelim).append(count);
      }

      valOut.set(stBld.toString());
      context.write(NullWritable.get(), valOut);
    }
Beispiel #5
0
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      items = value.toString().split(fieldDelimRegex);
      outKey.initialize();
      outVal.initialize();
      int initValue = 0;
      for (int i = 0; i < quantityAttr; ++i) {
        outKey.append(items[i]);
      }

      if (isAggrFileSplit) {
        if (items.length >= quantityAttr) {
          // existing aggregation
          outVal.add(
              Integer.parseInt(items[quantityAttr]), Integer.parseInt(items[quantityAttr + 1]));
        } else {
          // first aggregation
          outVal.add(initValue, initValue);
        }
      } else {
        outVal.add((int) 1, Integer.parseInt(items[quantityAttr]));
      }
      context.write(outKey, outVal);
    }
Beispiel #6
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context)
     */
    protected void reduce(TextInt key, Iterable<Tuple> values, Context context)
        throws IOException, InterruptedException {
      ratingCorrelations.clear();
      ++logCounter;
      ratingStat = null;
      for (Tuple value : values) {
        if (((Integer) value.get(value.getSize() - 1)) == 0) {
          // in rating correlation
          ratingCorrelations.add(value.createClone());
          context.getCounter("Predictor", "Rating correlation").increment(1);
        } else if (((Integer) value.get(value.getSize() - 1)) == 1) {
          // rating stat
          ratingStat = value.createClone();
        } else {
          // in user rating
          if (!ratingCorrelations.isEmpty()) {
            String userID = value.getString(0);
            rating = value.getInt(1);
            if (userRatingWithContext) {
              ratingContext = value.getString(2);
            }

            // all rating correlations
            for (Tuple ratingCorrTup : ratingCorrelations) {
              context.getCounter("Predictor", "User rating").increment(1);
              itemID = ratingCorrTup.getString(0);
              ratingCorr = ratingCorrTup.getInt(1);
              weight = ratingCorrTup.getInt(2);

              modifyCorrelation();
              int predRating =
                  linearCorrelation
                      ? (rating * ratingCorr) / maxRating
                      : (rating * correlationScale + ratingCorr) / maxRating;
              if (predRating > 0) {
                // userID, itemID, predicted rating, correlation length, correlation coeff, input
                // rating std dev
                ratingStdDev = ratingStat != null ? ratingStat.getInt(0) : -1;
                if (userRatingWithContext) {
                  valueOut.set(
                      userID
                          + fieldDelim
                          + itemID
                          + fieldDelim
                          + ratingContext
                          + fieldDelim
                          + predRating
                          + fieldDelim
                          + weight
                          + fieldDelim
                          + ratingCorr
                          + fieldDelim
                          + ratingStdDev);
                } else {
                  valueOut.set(
                      userID
                          + fieldDelim
                          + itemID
                          + fieldDelim
                          + predRating
                          + fieldDelim
                          + weight
                          + fieldDelim
                          + ratingCorr
                          + fieldDelim
                          + ratingStdDev);
                }
                context.write(NullWritable.get(), valueOut);
                context.getCounter("Predictor", "Rating correlation").increment(1);
              }
            }
          }
        }
      }
    }
Beispiel #7
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      String[] items = value.toString().split(fieldDelim);
      String itemID = items[0];
      if (isRatingFileSplit) {
        // user rating
        context.getCounter("Record type count", "Rating").increment(1);

        boolean toInclude = true;
        for (int i = 1; i < items.length; ++i) {
          // all user ratings for this item
          ratings = items[i].split(subFieldDelim);

          // time sensitive recommendation
          toInclude = true;
          if (ratingTimeCutoff > 0) {
            timeStamp = Long.parseLong(ratings[2]);
            toInclude = timeStamp > ratingTimeCutoff;
          }

          // contextual recommendation
          if (userRatingWithContext) {
            ratingContext = ratings[3];
          }

          // check for min input rating threshold
          inputRating = new Integer(ratings[1]);
          toInclude = toInclude && inputRating > minInputRating;

          if (toInclude) {
            // itemID
            keyOut.set(itemID, two);

            // userID, rating
            valOut.initialize();
            if (userRatingWithContext) {
              valOut.add(ratings[0], inputRating, context, two);
            } else {
              valOut.add(ratings[0], inputRating, two);
            }
            context.write(keyOut, valOut);
          }
        }
      } else if (isRatingStatFileSplit) {
        // rating stat
        context.getCounter("Record type count", "Rating stat").increment(1);
        int ratingStdDev = Integer.parseInt(items[STD_DEV_ORD]);
        keyOut.set(itemID, one);
        valOut.initialize();
        valOut.add(ratingStdDev, one);
        context.write(keyOut, valOut);
      } else {
        // item correlation
        context.getCounter("Record type count", "Correlation").increment(1);
        correlation = Integer.parseInt(items[2]);
        correlationLength = Integer.parseInt(items[3]);

        // if correlation is above min threshold
        if (correlation > minCorrelation) {
          // correlation of 1st item
          keyOut.set(items[0], zero);
          valOut.initialize();
          if (linearCorrelation) {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[1], correlation, correlationLength, zero);
          } else {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[1], -correlation, correlationLength, zero);
          }
          context.write(keyOut, valOut);

          // correlation of second item
          keyOut.set(items[1], zero);
          valOut.initialize();
          if (linearCorrelation) {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[0], correlation, correlationLength, zero);
          } else {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[0], -correlation, correlationLength, zero);
          }
          context.write(keyOut, valOut);
        }
      }
    }
Beispiel #8
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context)
     */
    protected void reduce(Tuple key, Iterable<Text> values, Context context)
        throws IOException, InterruptedException {
      srcEntityId = key.getString(0);
      count = 0;
      boolean doEmitNeighbor = false;
      valueList.clear();
      for (Text value : values) {
        doEmitNeighbor = false;
        // count based neighbor
        if (nearestByCount) {
          doEmitNeighbor = true;
          if (++count >= topMatchCount) {
            doEmitNeighbor = false;
          }
        }

        // distance based neighbors
        if (nearestByDistance) {
          // distance based neighbor
          String[] items = value.toString().split(fieldDelim);
          distance = Integer.parseInt(items[items.length - 1]);
          if (distance <= topMatchDistance) {
            if (!nearestByCount) {
              doEmitNeighbor = true;
            }
          } else {
            doEmitNeighbor = false;
          }
        }

        if (doEmitNeighbor) {
          // along with neighbors
          if (compactOutput) {
            if (recordInOutput) {
              // contains id,record,rank - strip out entity ID and rank
              String[] valueItems = value.toString().split(fieldDelim);
              valueList.add(org.chombo.util.Utility.join(valueItems, 1, valueItems.length - 1));
            } else {
              // contains id, rank
              valueList.add(value.toString());
            }
          } else {
            outVal.set(srcEntityId + fieldDelim + value.toString());
            context.write(NullWritable.get(), outVal);
          }
        } else {
          // only source entity if neighborhood condition not met
          if (outputWithNoNeighbor && !compactOutput) {
            outVal.set(srcEntityId);
            context.write(NullWritable.get(), outVal);
          }
        }
      }

      // emit in compact format
      if (compactOutput) {
        boolean doEmit = true;
        String srcRec = recordInOutput ? key.getString(1) : "";
        int numNeighbor = valueList.size();
        if (0 == numNeighbor) {
          // only source entity if neighborhood condition not met
          if (outputWithNoNeighbor) {
            outVal.set(
                recordInOutput
                    ? srcEntityId + fieldDelim + srcRec + fieldDelim + numNeighbor
                    : srcEntityId);
          } else {
            doEmit = false;
          }
        } else {
          String targetValues = org.chombo.util.Utility.join(valueList, fieldDelim);
          outVal.set(
              recordInOutput
                  ? srcEntityId + fieldDelim + srcRec + fieldDelim + numNeighbor + targetValues
                  : srcEntityId + fieldDelim + targetValues);
        }
        if (doEmit) {
          context.write(NullWritable.get(), outVal);
        }
      }
    }
Beispiel #9
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Reducer#reduce(KEYIN, java.lang.Iterable, org.apache.hadoop.mapreduce.Reducer.Context)
     */
    protected void reduce(Tuple key, Iterable<Tuple> values, Context context)
        throws IOException, InterruptedException {
      if (stBld.length() > 0) {
        stBld.delete(0, stBld.length());
      }
      testEntityId = key.getString(0);
      stBld.append(testEntityId);

      // collect nearest neighbors
      count = 0;
      neighborhood.initialize();
      for (Tuple value : values) {
        int index = 0;
        trainEntityId = value.getString(index++);
        distance = value.getInt(index++);
        trainClassValue = value.getString(index++);
        if (classCondtionWeighted && neighborhood.IsInClassificationMode()) {
          trainingFeaturePostProb = value.getDouble(index++);
          if (inverseDistanceWeighted) {
            neighborhood.addNeighbor(
                trainEntityId, distance, trainClassValue, trainingFeaturePostProb, true);
          } else {
            neighborhood.addNeighbor(
                trainEntityId, distance, trainClassValue, trainingFeaturePostProb);
          }
        } else {
          Neighborhood.Neighbor neighbor =
              neighborhood.addNeighbor(trainEntityId, distance, trainClassValue);
          if (neighborhood.isInLinearRegressionMode()) {
            neighbor.setRegrInputVar(Double.parseDouble(value.getString(index++)));
          }
        }
        if (++count == topMatchCount) {
          break;
        }
      }
      if (neighborhood.isInLinearRegressionMode()) {
        String testRegrNumFld = isValidationMode ? key.getString(2) : key.getString(1);
        neighborhood.withRegrInputVar(Double.parseDouble(testRegrNumFld));
      }

      // class distribution
      neighborhood.processClassDitribution();
      if (outputClassDistr && neighborhood.IsInClassificationMode()) {
        if (classCondtionWeighted) {
          Map<String, Double> classDistr = neighborhood.getWeightedClassDitribution();
          double thisScore;
          for (String classVal : classDistr.keySet()) {
            thisScore = classDistr.get(classVal);
            // LOG.debug("classVal:" + classVal + " thisScore:" + thisScore);
            stBld.append(fieldDelim).append(classVal).append(fieldDelim).append(thisScore);
          }
        } else {
          Map<String, Integer> classDistr = neighborhood.getClassDitribution();
          int thisScore;
          for (String classVal : classDistr.keySet()) {
            thisScore = classDistr.get(classVal);
            stBld.append(classVal).append(fieldDelim).append(thisScore);
          }
        }
      }

      if (isValidationMode) {
        // actual class attr value
        testClassValActual = key.getString(1);
        stBld.append(fieldDelim).append(testClassValActual);
      }

      // predicted class value
      if (useCostBasedClassifier) {
        // use cost based arbitrator
        if (neighborhood.IsInClassificationMode()) {
          posClassProbab = neighborhood.getClassProb(posClassAttrValue);
          testClassValPredicted = costBasedArbitrator.classify(posClassProbab);
        }
      } else {
        // get directly
        if (neighborhood.IsInClassificationMode()) {
          testClassValPredicted = neighborhood.classify();
        } else {
          testClassValPredicted = "" + neighborhood.getPredictedValue();
        }
      }
      stBld.append(fieldDelim).append(testClassValPredicted);

      if (isValidationMode) {
        if (neighborhood.IsInClassificationMode()) {
          confMatrix.report(testClassValPredicted, testClassValActual);
        }
      }
      outVal.set(stBld.toString());
      context.write(NullWritable.get(), outVal);
    }
Beispiel #10
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      items = value.toString().split(fieldDelimRegex);
      outKey.initialize();
      outVal.initialize();
      if (classCondtionWeighted) {
        trainEntityId = items[2];
        testEntityId = items[0];
        rank = Integer.parseInt(items[3]);
        trainClassAttr = items[4];
        trainingFeaturePostProb = Double.parseDouble(items[5]);
        if (isValidationMode) {
          // validation mode
          testClassAttr = items[1];
          outKey.add(testEntityId, testClassAttr, rank);
        } else {
          // prediction mode
          outKey.add(testEntityId, rank);
        }
        outVal.add(trainEntityId, rank, trainClassAttr, trainingFeaturePostProb);
      } else {
        int index = 0;
        trainEntityId = items[index++];
        testEntityId = items[index++];
        rank = Integer.parseInt(items[index++]);
        trainClassAttr = items[index++];
        if (isValidationMode) {
          // validation mode
          testClassAttr = items[index++];
        }
        outVal.add(trainEntityId, rank, trainClassAttr);

        // for linear regression add numeric input field
        if (isLinearRegression) {
          trainRegrNumFld = items[index++];
          outVal.add(trainRegrNumFld);

          testRegrNumFld = items[index++];
          if (isValidationMode) {
            outKey.add(testEntityId, testClassAttr, testRegrNumFld, rank);
          } else {
            outKey.add(testEntityId, testRegrNumFld, rank);
          }
          outKey.add(testRegrNumFld);
        } else {
          if (isValidationMode) {
            outKey.add(testEntityId, testClassAttr, rank);
          } else {
            outKey.add(testEntityId, rank);
          }
        }
      }
      context.write(outKey, outVal);
    }