/** * Evaluates the full-text match. * * @param qc query context * @return number of tokens, used for scoring * @throws QueryException query exception */ private int contains(final QueryContext qc) throws QueryException { first = true; final FTLexer lexer = ftt.lexer(qc.ftToken); // use faster evaluation for default options int num = 0; if (fast) { for (final byte[] t : tokens) { final FTTokens qtok = ftt.cache(t); num = Math.max(num, ftt.contains(qtok, lexer) * qtok.length()); } return num; } // find and count all occurrences final boolean all = mode == FTMode.ALL || mode == FTMode.ALL_WORDS; int oc = 0; for (final byte[] w : unique(tokens(qc))) { final FTTokens qtok = ftt.cache(w); final int o = ftt.contains(qtok, lexer); if (all && o == 0) return 0; num = Math.max(num, o * qtok.length()); oc += o; } // check if occurrences are in valid range. if yes, return number of tokens final long mn = occ != null ? toLong(occ[0], qc) : 1; final long mx = occ != null ? toLong(occ[1], qc) : Long.MAX_VALUE; if (mn == 0 && oc == 0) matches = FTNot.not(matches); return oc >= mn && oc <= mx ? Math.max(1, num) : 0; }
@Override public final void mouseDragged(final MouseEvent e) { if (!SwingUtilities.isLeftMouseButton(e)) return; // selection mode select(e.getPoint(), false); final int y = Math.max(20, Math.min(e.getY(), getHeight() - 20)); if (y != e.getY()) scroll.pos(scroll.pos() + e.getY() - y); }
@Override public boolean indexAccessible(final IndexInfo ii) { /* If the following conditions yield true, the index is accessed: * - all query terms are statically available * - no FTTimes option is specified * - explicitly set case, diacritics and stemming match options do not * conflict with index options. */ data = ii.ic.data; final MetaData md = data.meta; final FTOpt fto = ftt.opt; /* Index will be applied if no explicit match options have been set * that conflict with the index options. As a consequence, though, index- * based querying might yield other results than sequential scanning. */ if (occ != null || fto.cs != null && md.casesens == (fto.cs == FTCase.INSENSITIVE) || fto.isSet(DC) && md.diacritics != fto.is(DC) || fto.isSet(ST) && md.stemming != fto.is(ST) || fto.ln != null && !fto.ln.equals(md.language)) return false; // adopt database options to tokenizer fto.copy(md); // estimate costs if text is not known at compile time if (tokens == null) { ii.costs = Math.max(2, data.meta.size / 30); return true; } // summarize number of hits; break loop if no hits are expected final FTLexer ft = new FTLexer(fto); ii.costs = 0; for (byte[] t : tokens) { ft.init(t); while (ft.hasNext()) { final byte[] tok = ft.nextToken(); if (fto.sw != null && fto.sw.contains(tok)) continue; if (fto.is(WC)) { // don't use index if one of the terms starts with a wildcard t = ft.get(); if (t[0] == '.') return false; // don't use index if certain characters or more than 1 dot are found int d = 0; for (final byte w : t) { if (w == '{' || w == '\\' || w == '.' && ++d > 1) return false; } } // favor full-text index requests over exact queries final int costs = data.costs(ft); if (costs != 0) ii.costs += Math.max(2, costs / 100); } } return true; }
@Override public DiskData build() throws IOException { meta.assign(parser); meta.dirty = true; // calculate optimized output buffer sizes to reduce disk fragmentation final Runtime rt = Runtime.getRuntime(); final long max = Math.min(1 << 22, rt.maxMemory() - rt.freeMemory() >> 2); int bs = (int) Math.min(meta.filesize, max); bs = Math.max(IO.BLOCKSIZE, bs - bs % IO.BLOCKSIZE); // drop old database (if available) and create new one DropDB.drop(dbname, sopts); sopts.dbpath(dbname).md(); elemNames = new Names(meta); attrNames = new Names(meta); try { tout = new DataOutput(new TableOutput(meta, DATATBL)); xout = new DataOutput(meta.dbfile(DATATXT), bs); vout = new DataOutput(meta.dbfile(DATAATV), bs); sout = new DataOutput(meta.dbfile(DATATMP), bs); final Performance perf = Prop.debug ? new Performance() : null; Util.debug(tit() + DOTS); parse(); if (Prop.debug) Util.errln(" " + perf + " (" + Performance.getMemory() + ')'); } catch (final IOException ex) { try { close(); } catch (final IOException ignored) { } throw ex; } close(); // copy temporary values into database table try (final DataInput in = new DataInput(meta.dbfile(DATATMP))) { final TableAccess ta = new TableDiskAccess(meta, true); for (; spos < ssize; ++spos) ta.write4(in.readNum(), 8, in.readNum()); ta.close(); } meta.dbfile(DATATMP).delete(); // return database instance return new DiskData(meta, elemNames, attrNames, path, ns); }
@Override public void keyTyped(final KeyEvent e) { if (!hist.active() || control(e) || DELNEXT.is(e) || DELPREV.is(e) || ESCAPE.is(e) || CUT2.is(e)) return; final int caret = editor.pos(); // remember if marked text is to be deleted final StringBuilder sb = new StringBuilder(1).append(e.getKeyChar()); final boolean indent = TAB.is(e) && editor.indent(sb, e.isShiftDown()); // delete marked text final boolean selected = editor.selected() && !indent; if (selected) editor.delete(); final int move = ENTER.is(e) ? editor.enter(sb) : editor.add(sb, selected); // refresh history and adjust cursor position hist.store(editor.text(), caret, editor.pos()); if (move != 0) editor.pos(Math.min(editor.size(), caret + move)); // adjust text height scrollCode.invokeLater(true); e.consume(); }
/** * Fill the current buffer with bytes from the specified array from the specified offset. * * @param s source array * @param o offset from the beginning of the array * @return number of written bytes */ private int write(final byte[] s, final int o) { final Buffer bf = bm.current(); final int len = Math.min(IO.BLOCKSIZE, s.length - o); System.arraycopy(s, o, bf.data, 0, len); bf.dirty = true; return len; }
/** * Performs a wildcard search for the specified token. * * @param token token to look for * @return iterator */ private synchronized IndexIterator wc(final byte[] token) { final FTIndexIterator it = FTIndexIterator.FTEMPTY; final FTWildcard wc = new FTWildcard(token); if (!wc.parse()) return it; final IntList pr = new IntList(); final IntList ps = new IntList(); final byte[] pref = wc.prefix(); final int pl = pref.length, tl = tp.length; final int l = Math.min(tl - 1, wc.max()); for (int ti = pl; ti <= l; ti++) { int i = tp[ti]; if (i == -1) continue; int c = ti + 1; int e = -1; while (c < tl && e == -1) e = tp[c++]; i = find(pref, i, e, ti); while (i < e) { final byte[] t = inY.readBytes(i, ti); if (!startsWith(t, pref)) break; if (wc.match(t)) { inZ.cursor(pointer(i, ti)); final int s = size(i, ti); for (int d = 0; d < s; d++) { pr.add(inZ.readNum()); ps.add(inZ.readNum()); } } i += ti + ENTRY; } } return iter(new FTCache(pr, ps), token); }
/** * Initializes colors. * * @param prop gui properties */ public static void init(final GUIProp prop) { final int r = prop.num(GUIProp.COLORRED); final int g = prop.num(GUIProp.COLORGREEN); final int b = prop.num(GUIProp.COLORBLUE); // calculate color c: // c = (255 - expectedColor) * 10 / factor (= GUIRED/BLUE/GREEN) color1 = new Color(col(r, 24), col(g, 25), col(b, 40)); color2 = new Color(col(r, 32), col(g, 32), col(b, 44)); color3 = new Color(col(r, 48), col(g, 50), col(b, 40)); color4 = new Color(col(r, 140), col(g, 100), col(b, 70)); color1A = new Color(col(r, 110), col(g, 150), col(b, 160), 100); colormark1A = new Color(col(r, 32), col(g, 160), col(b, 320), 100); colormark2A = new Color(col(r, 16), col(g, 80), col(b, 160), 100); colormark1 = new Color(col(r, 16), col(g, 120), col(b, 240)); colormark2 = new Color(col(r, 16), col(g, 80), col(b, 160)); colormark3 = new Color(col(r, 32), col(g, 160), col(b, 320)); colormark4 = new Color(col(r, 1), col(g, 40), col(b, 80)); // create color array for (int l = 1; l < COLORS.length + 1; ++l) { COLORS[l - 1] = new Color(Math.max(255 - l * r, 0), Math.max(255 - l * g, 0), Math.max(255 - l * b, 0)); } final Color c = COLORS[16]; color2A = new Color(c.getRed(), c.getGreen(), c.getBlue(), 40); color3A = new Color(c.getRed(), c.getGreen(), c.getBlue(), 100); final String f = prop.get(GUIProp.FONT); final int type = prop.num(GUIProp.FONTTYPE); fontSize = prop.num(GUIProp.FONTSIZE); font = new Font(f, type, fontSize); mfont = new Font(prop.get(GUIProp.MONOFONT), type, fontSize); bfont = new Font(f, Font.BOLD, fontSize); lfont = new Font(f, type, 18 + (fontSize >> 1)); dmfont = new Font(prop.get(GUIProp.MONOFONT), 0, TFONT.getSize() - 1); final Container comp = new Container(); dwidth = comp.getFontMetrics(dmfont).getWidths(); fwidth = comp.getFontMetrics(font).getWidths(); lwidth = comp.getFontMetrics(lfont).getWidths(); mfwidth = comp.getFontMetrics(mfont).getWidths(); bwidth = comp.getFontMetrics(bfont).getWidths(); }
/** * Performs a fuzzy search for the specified token with a maximum number of errors. * * @param token token to look for * @param k number of errors allowed * @return iterator */ private synchronized IndexIterator fuzzy(final byte[] token, final int k) { FTIndexIterator it = FTIndexIterator.FTEMPTY; final int tokl = token.length, tl = tp.length; final int e = Math.min(tl - 1, tokl + k); int s = Math.max(1, tokl - k) - 1; while (++s <= e) { int p = tp[s]; if (p == -1) continue; int t = s + 1, r = -1; while (t < tl && r == -1) r = tp[t++]; while (p < r) { if (ls.similar(inY.readBytes(p, s), token, k)) { it = FTIndexIterator.union(iter(pointer(p, s), size(p, s), inZ, token), it); } p += s + ENTRY; } } return it; }
@Override public synchronized int costs(final IndexToken it) { final byte[] tok = it.get(); if (tok.length > data.meta.maxlen) return Integer.MAX_VALUE; // estimate costs for queries which stretch over multiple index entries final FTOpt opt = ((FTLexer) it).ftOpt(); if (opt.is(FZ) || opt.is(WC)) return Math.max(1, data.meta.size >> 4); return entry(tok).size; }
/** * Converts color value with specified factor. * * @param c color * @param f factor * @return converted color value */ private static int col(final int c, final int f) { return Math.max(0, 255 - c * f / 10); }
/** * Returns the specified color from the color gradient. * * @param i color index * @return color */ public static Color color(final int i) { return COLORS[Math.min(COLORS.length - 1, i)]; }
/** * Evaluates the specified query. * * @param query query * @return success flag */ final boolean query(final String query) { final Performance p = new Performance(); String error; if (exception != null) { error = Util.message(exception); } else { try { long hits = 0; final boolean run = options.get(MainOptions.RUNQUERY); final boolean serial = options.get(MainOptions.SERIALIZE); final int runs = Math.max(1, options.get(MainOptions.RUNS)); for (int r = 0; r < runs; ++r) { // reuse existing processor instance if (r != 0) qp = null; qp(query, context); parse(p); if (r == 0) plan(false); qp.compile(); info.compiling += p.time(); if (r == 0) plan(true); if (!run) continue; final PrintOutput po = r == 0 && serial ? out : new NullOutput(); try (final Serializer ser = qp.getSerializer(po)) { if (maxResults >= 0) { result = qp.cache(maxResults); info.evaluating += p.time(); result.serialize(ser); hits = result.size(); } else { hits = 0; final Iter ir = qp.iter(); info.evaluating += p.time(); for (Item it; (it = ir.next()) != null; ) { ser.serialize(it); ++hits; checkStop(); } } } qp.close(); info.serializing += p.time(); } // dump some query info // out.flush(); // remove string list if global locking is used and if query is updating if (soptions.get(StaticOptions.GLOBALLOCK) && qp.updating) { info.readLocked = null; info.writeLocked = null; } return info(info.toString(qp, out.size(), hits, options.get(MainOptions.QUERYINFO))); } catch (final QueryException | IOException ex) { exception = ex; error = Util.message(ex); } catch (final ProcException ex) { error = INTERRUPTED; } catch (final StackOverflowError ex) { Util.debug(ex); error = BASX_STACKOVERFLOW.desc; } catch (final RuntimeException ex) { extError(""); Util.debug(info()); throw ex; } finally { // close processor after exceptions if (qp != null) qp.close(); } } return extError(error); }
/** * Prints the current stack trace to System.err. * * @param i number of steps to print */ public static void stack(final int i) { errln("You're here:"); final String[] stack = toArray(new Throwable()); final int l = Math.min(Math.max(2, i + 2), stack.length); for (int s = 2; s < l; ++s) errln(stack[s]); }
@Override public void insert(final int pre, final byte[] entries) { final int nnew = entries.length; if (nnew == 0) return; dirty(); // number of records to be inserted final int nr = nnew >>> IO.NODEPOWER; int split = 0; if (used == 0) { // special case: insert new data into first block if database is empty readPage(0); usedPages.set(0); ++used; } else if (pre > 0) { // find the offset within the block where the new records will be inserted split = cursor(pre - 1) + IO.NODESIZE; } else { // all insert operations will add data after first node. // i.e., there is no "insert before first document" statement throw Util.notExpected("Insertion at beginning of populated table."); } // number of bytes occupied by old records in the current block final int nold = npre - fpre << IO.NODEPOWER; // number of bytes occupied by old records which will be moved at the end final int moved = nold - split; // special case: all entries fit in the current block Buffer bf = bm.current(); if (nold + nnew <= IO.BLOCKSIZE) { Array.move(bf.data, split, nnew, moved); System.arraycopy(entries, 0, bf.data, split, nnew); bf.dirty = true; // increment first pre-values of blocks after the last modified block for (int i = page + 1; i < used; ++i) fpres[i] += nr; // update cached variables (fpre is not changed) npre += nr; meta.size += nr; return; } // append old entries at the end of the new entries final byte[] all = new byte[nnew + moved]; System.arraycopy(entries, 0, all, 0, nnew); System.arraycopy(bf.data, split, all, nnew, moved); // fill in the current block with new entries // number of bytes which fit in the first block int nrem = IO.BLOCKSIZE - split; if (nrem > 0) { System.arraycopy(all, 0, bf.data, split, nrem); bf.dirty = true; } // number of new required blocks and remaining bytes final int req = all.length - nrem; int needed = req / IO.BLOCKSIZE; final int remain = req % IO.BLOCKSIZE; if (remain > 0) { // check if the last entries can fit in the block after the current one if (page + 1 < used) { final int o = occSpace(page + 1) << IO.NODEPOWER; if (remain <= IO.BLOCKSIZE - o) { // copy the last records readPage(page + 1); bf = bm.current(); System.arraycopy(bf.data, 0, bf.data, remain, o); System.arraycopy(all, all.length - remain, bf.data, 0, remain); bf.dirty = true; // reduce the pre value, since it will be later incremented with nr fpres[page] -= remain >>> IO.NODEPOWER; // go back to the previous block readPage(page - 1); } else { // there is not enough space in the block - allocate a new one ++needed; } } else { // this is the last block - allocate a new one ++needed; } } // number of expected blocks: existing blocks + needed block - empty blocks final int exp = blocks + needed - (blocks - used); if (exp > fpres.length) { // resize directory arrays if existing ones are too small final int ns = Math.max(fpres.length << 1, exp); fpres = Arrays.copyOf(fpres, ns); pages = Arrays.copyOf(pages, ns); } // make place for the blocks where the new entries will be written Array.move(fpres, page + 1, needed, used - page - 1); Array.move(pages, page + 1, needed, used - page - 1); // write the all remaining entries while (needed-- > 0) { freeBlock(); nrem += write(all, nrem); fpres[page] = fpres[page - 1] + IO.ENTRIES; pages[page] = (int) bm.current().pos; } // increment all fpre values after the last modified block for (int i = page + 1; i < used; ++i) fpres[i] += nr; meta.size += nr; // update cached variables fpre = fpres[page]; npre = page + 1 < used && fpres[page + 1] < meta.size ? fpres[page + 1] : meta.size; }