Beispiel #1
0
  /** Creates a Flink program that uses the specified spouts and bolts. */
  private void translateTopology() {

    unprocessdInputsPerBolt.clear();
    outputStreams.clear();
    declarers.clear();
    availableInputs.clear();

    // Storm defaults to parallelism 1
    env.setParallelism(1);

    /* Translation of topology */

    for (final Entry<String, IRichSpout> spout : spouts.entrySet()) {
      final String spoutId = spout.getKey();
      final IRichSpout userSpout = spout.getValue();

      final FlinkOutputFieldsDeclarer declarer = new FlinkOutputFieldsDeclarer();
      userSpout.declareOutputFields(declarer);
      final HashMap<String, Fields> sourceStreams = declarer.outputStreams;
      this.outputStreams.put(spoutId, sourceStreams);
      declarers.put(spoutId, declarer);

      final HashMap<String, DataStream<Tuple>> outputStreams =
          new HashMap<String, DataStream<Tuple>>();
      final DataStreamSource<?> source;

      if (sourceStreams.size() == 1) {
        final SpoutWrapper<Tuple> spoutWrapperSingleOutput =
            new SpoutWrapper<Tuple>(userSpout, spoutId, null, null);
        spoutWrapperSingleOutput.setStormTopology(stormTopology);

        final String outputStreamId = (String) sourceStreams.keySet().toArray()[0];

        DataStreamSource<Tuple> src =
            env.addSource(
                spoutWrapperSingleOutput, spoutId, declarer.getOutputType(outputStreamId));

        outputStreams.put(outputStreamId, src);
        source = src;
      } else {
        final SpoutWrapper<SplitStreamType<Tuple>> spoutWrapperMultipleOutputs =
            new SpoutWrapper<SplitStreamType<Tuple>>(userSpout, spoutId, null, null);
        spoutWrapperMultipleOutputs.setStormTopology(stormTopology);

        @SuppressWarnings({"unchecked", "rawtypes"})
        DataStreamSource<SplitStreamType<Tuple>> multiSource =
            env.addSource(
                spoutWrapperMultipleOutputs,
                spoutId,
                (TypeInformation) TypeExtractor.getForClass(SplitStreamType.class));

        SplitStream<SplitStreamType<Tuple>> splitSource =
            multiSource.split(new StormStreamSelector<Tuple>());
        for (String streamId : sourceStreams.keySet()) {
          SingleOutputStreamOperator<Tuple, ?> outStream =
              splitSource.select(streamId).map(new SplitStreamMapper<Tuple>());
          outStream.getTransformation().setOutputType(declarer.getOutputType(streamId));
          outputStreams.put(streamId, outStream);
        }
        source = multiSource;
      }
      availableInputs.put(spoutId, outputStreams);

      final ComponentCommon common = stormTopology.get_spouts().get(spoutId).get_common();
      if (common.is_set_parallelism_hint()) {
        int dop = common.get_parallelism_hint();
        source.setParallelism(dop);
      } else {
        common.set_parallelism_hint(1);
      }
    }

    /**
     * 1. Connect all spout streams with bolts streams 2. Then proceed with the bolts stream already
     * connected
     *
     * <p>Because we do not know the order in which an iterator steps over a set, we might process a
     * consumer before its producer ->thus, we might need to repeat multiple times
     */
    boolean makeProgress = true;
    while (bolts.size() > 0) {
      if (!makeProgress) {
        StringBuilder strBld = new StringBuilder();
        strBld.append("Unable to build Topology. Could not connect the following bolts:");
        for (String boltId : bolts.keySet()) {
          strBld.append("\n  ");
          strBld.append(boltId);
          strBld.append(": missing input streams [");
          for (Entry<GlobalStreamId, Grouping> streams : unprocessdInputsPerBolt.get(boltId)) {
            strBld.append("'");
            strBld.append(streams.getKey().get_streamId());
            strBld.append("' from '");
            strBld.append(streams.getKey().get_componentId());
            strBld.append("'; ");
          }
          strBld.append("]");
        }

        throw new RuntimeException(strBld.toString());
      }
      makeProgress = false;

      final Iterator<Entry<String, IRichBolt>> boltsIterator = bolts.entrySet().iterator();
      while (boltsIterator.hasNext()) {

        final Entry<String, IRichBolt> bolt = boltsIterator.next();
        final String boltId = bolt.getKey();
        final IRichBolt userBolt = copyObject(bolt.getValue());

        final ComponentCommon common = stormTopology.get_bolts().get(boltId).get_common();

        Set<Entry<GlobalStreamId, Grouping>> unprocessedBoltInputs =
            unprocessdInputsPerBolt.get(boltId);
        if (unprocessedBoltInputs == null) {
          unprocessedBoltInputs = new HashSet<>();
          unprocessedBoltInputs.addAll(common.get_inputs().entrySet());
          unprocessdInputsPerBolt.put(boltId, unprocessedBoltInputs);
        }

        // check if all inputs are available
        final int numberOfInputs = unprocessedBoltInputs.size();
        int inputsAvailable = 0;
        for (Entry<GlobalStreamId, Grouping> entry : unprocessedBoltInputs) {
          final String producerId = entry.getKey().get_componentId();
          final String streamId = entry.getKey().get_streamId();
          final HashMap<String, DataStream<Tuple>> streams = availableInputs.get(producerId);
          if (streams != null && streams.get(streamId) != null) {
            inputsAvailable++;
          }
        }

        if (inputsAvailable != numberOfInputs) {
          // traverse other bolts first until inputs are available
          continue;
        } else {
          makeProgress = true;
          boltsIterator.remove();
        }

        final Map<GlobalStreamId, DataStream<Tuple>> inputStreams = new HashMap<>(numberOfInputs);

        for (Entry<GlobalStreamId, Grouping> input : unprocessedBoltInputs) {
          final GlobalStreamId streamId = input.getKey();
          final Grouping grouping = input.getValue();

          final String producerId = streamId.get_componentId();

          final Map<String, DataStream<Tuple>> producer = availableInputs.get(producerId);

          inputStreams.put(streamId, processInput(boltId, userBolt, streamId, grouping, producer));
        }

        final SingleOutputStreamOperator<?, ?> outputStream =
            createOutput(boltId, userBolt, inputStreams);

        if (common.is_set_parallelism_hint()) {
          int dop = common.get_parallelism_hint();
          outputStream.setParallelism(dop);
        } else {
          common.set_parallelism_hint(1);
        }
      }
    }
  }
Beispiel #2
0
  /** Tests whether parallelism gets set. */
  @Test
  public void testParallelism() {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStreamSource<Tuple2<Long, Long>> src = env.fromElements(new Tuple2<>(0L, 0L));
    env.setParallelism(10);

    SingleOutputStreamOperator<Long, ?> map =
        src.map(
                new MapFunction<Tuple2<Long, Long>, Long>() {
                  @Override
                  public Long map(Tuple2<Long, Long> value) throws Exception {
                    return null;
                  }
                })
            .name("MyMap");

    DataStream<Long> windowed =
        map.windowAll(GlobalWindows.create())
            .trigger(PurgingTrigger.of(CountTrigger.of(10)))
            .fold(
                0L,
                new FoldFunction<Long, Long>() {
                  @Override
                  public Long fold(Long accumulator, Long value) throws Exception {
                    return null;
                  }
                });

    windowed.addSink(new NoOpSink<Long>());

    DataStreamSink<Long> sink =
        map.addSink(
            new SinkFunction<Long>() {
              private static final long serialVersionUID = 1L;

              @Override
              public void invoke(Long value) throws Exception {}
            });

    assertEquals(1, env.getStreamGraph().getStreamNode(src.getId()).getParallelism());
    assertEquals(10, env.getStreamGraph().getStreamNode(map.getId()).getParallelism());
    assertEquals(1, env.getStreamGraph().getStreamNode(windowed.getId()).getParallelism());
    assertEquals(
        10, env.getStreamGraph().getStreamNode(sink.getTransformation().getId()).getParallelism());

    env.setParallelism(7);

    // Some parts, such as windowing rely on the fact that previous operators have a parallelism
    // set when instantiating the Discretizer. This would break if we dynamically changed
    // the parallelism of operations when changing the setting on the Execution Environment.
    assertEquals(1, env.getStreamGraph().getStreamNode(src.getId()).getParallelism());
    assertEquals(10, env.getStreamGraph().getStreamNode(map.getId()).getParallelism());
    assertEquals(1, env.getStreamGraph().getStreamNode(windowed.getId()).getParallelism());
    assertEquals(
        10, env.getStreamGraph().getStreamNode(sink.getTransformation().getId()).getParallelism());

    try {
      src.setParallelism(3);
      fail();
    } catch (IllegalArgumentException success) {
      // do nothing
    }

    DataStreamSource<Long> parallelSource = env.generateSequence(0, 0);
    parallelSource.addSink(new NoOpSink<Long>());
    assertEquals(7, env.getStreamGraph().getStreamNode(parallelSource.getId()).getParallelism());

    parallelSource.setParallelism(3);
    assertEquals(3, env.getStreamGraph().getStreamNode(parallelSource.getId()).getParallelism());

    map.setParallelism(2);
    assertEquals(2, env.getStreamGraph().getStreamNode(map.getId()).getParallelism());

    sink.setParallelism(4);
    assertEquals(
        4, env.getStreamGraph().getStreamNode(sink.getTransformation().getId()).getParallelism());
  }