Beispiel #1
0
  private void findUnitClusters(int[] clusterassoc, double[][] lkvalues, int[][] neighbors) {
    Vector<ObjectComparablePair> topunitterms = new Vector<ObjectComparablePair>();
    // sort units according to their highest value -> order to find clusters
    for (int i = 0; i < lkvalues.length; i++) {
      double max = Stat.max(lkvalues[i]);
      if (max <= 0.) continue;
      topunitterms.addElement(new ObjectComparablePair(new Integer(i), new Double(max)));
    }
    Collections.sort(topunitterms);
    Collections.reverse(topunitterms);

    Iterator<ObjectComparablePair> ocpit = topunitterms.iterator();
    while (ocpit.hasNext()) {
      int curunit = ((Integer) (ocpit.next().getObject())).intValue();
      floodFillSimilarClusters(curunit, clusterassoc, lkvalues, neighbors, curunit);
    }

    // join all empty units
    int firstemptyindex = -1;
    for (int i = 0; i < lkvalues.length; i++) {
      if (Stat.max(lkvalues[i]) <= 0.) {
        if (firstemptyindex == -1) firstemptyindex = i;
        else clusterassoc[i] = firstemptyindex;
      }
    }
  }
Beispiel #2
0
 public static int createStat(FlatBufferBuilder builder, int idOffset, long val, int count) {
   builder.startObject(3);
   Stat.addVal(builder, val);
   Stat.addId(builder, idOffset);
   Stat.addCount(builder, count);
   return Stat.endStat(builder);
 }
Beispiel #3
0
 public int compareTo(Unit u) {
   return (int) (u.s.fitness() * 100 - s.fitness() * 100);
 }
Beispiel #4
0
 public String toString() {
   return trm + "," + prm + "," + wtm + "," + tkm + "," + ped + "," + s.fitness();
 }
Beispiel #5
0
  public void threadEnded() {
    if (wtet != null && artterms == null) artterms = wtet.getArtistsAndTermVectors();

    int cols = som.getNumberOfColumns(), rows = som.getNumberOfRows();

    // use lagus-kaski labelling technique
    // generate summed tf vector per cluster
    int[][] clustervecs = new int[cols * rows][MusicDictionary.getDictionary().size()];
    int[] clustersize = new int[cols * rows];
    int[] vecsum = new int[MusicDictionary.getDictionary().size()];

    // for lagus kaski G2 determine r0 and r1 zone indices
    int[][] r0elements = new int[cols * rows][5];
    int[][] r1elements = new int[cols * rows][8];

    for (int i = 0; i < cols; i++) { // for each column in codebook
      for (int j = 0; j < rows; j++) { // for each row in codebook
        int mappos = i * som.getNumberOfRows() + j;
        // get Voronoi-Set for current map unit
        Vector temp = (Vector) som.voronoiSet.elementAt(mappos);
        clustersize[mappos] = temp.size();
        // get this set ordered
        temp = som.getPrototypesForMU(mappos, clustersize[mappos]);
        int[] clustterms = new int[MusicDictionary.getDictionary().size()];
        for (int k = 0; k < clustersize[mappos]; k++) {
          String artist = (String) temp.elementAt(k);
          int[] termvec = artterms.get(artist);
          if (termvec == null) {
            System.err.println("no term vector for artist " + artist);
            continue;
          }
          Vec.addTo(clustterms, termvec);
        }
        // remove all terms with tf < 3 in cluster
        for (int k = 0; k < clustterms.length; k++) {
          if (clustterms[k] < Math.min(3, clustersize[mappos])) clustterms[k] = 0;
        }
        Vec.addTo(vecsum, clustterms);

        //				System.out.println("total "+Stat.sum(clustterms)+" terms in cluster "+mappos);
        clustervecs[mappos] = clustterms; // Vec.divide(clustterms, (count>0)?count:1);

        // finally, determine r0 and r1 zone elements
        // for r0
        r0elements[mappos][0] = mappos;
        r0elements[mappos][1] = i > 0 ? (i - 1) * rows + j : -1;
        r0elements[mappos][2] = i + 1 < cols ? (i + 1) * rows + j : -1;
        r0elements[mappos][3] = j > 0 ? i * rows + j - 1 : -1;
        r0elements[mappos][4] = j + 1 < rows ? i * rows + j + 1 : -1;
        // for r1
        r1elements[mappos][0] = i > 1 ? (i - 2) * rows + j : -1;
        r1elements[mappos][1] = i + 2 < cols ? (i + 2) * rows + j : -1;
        r1elements[mappos][2] = j > 1 ? i * rows + j - 2 : -1;
        r1elements[mappos][3] = j + 2 < rows ? i * rows + j + 2 : -1;
        r1elements[mappos][4] = i > 0 && j > 0 ? (i - 1) * rows + j - 1 : -1;
        r1elements[mappos][5] = i + 1 < cols && j > 0 ? (i + 1) * rows + j - 1 : -1;
        r1elements[mappos][6] = i > 0 && j + 1 < rows ? (i - 1) * rows + j + 1 : -1;
        r1elements[mappos][7] = i + 1 < cols && j + 1 < rows ? (i + 1) * rows + j + 1 : -1;
      }
    }

    double[] summedterms = new double[MusicDictionary.getDictionary().size()];
    int[] clustertermsums = new int[cols * rows];
    for (int i = 0; i < clustervecs.length; i++) {
      clustertermsums[i] = Stat.sum(clustervecs[i]);
      //			for (int j=0; j<clustervecs[i].length; j++) {
      //				summedterms[j] += clustertermsums[i]>0?clustervecs[i][j]/clustertermsums[i]:0;
      //			}
      if (clustertermsums[i] == 0) continue;
      Vec.addTo(summedterms, Vec.divide(clustervecs[i], clustertermsums[i]));
    }
    double[][] lkvalues = new double[cols * rows][MusicDictionary.getDictionary().size()];
    // determine min and max laguskaski values for value normalization between 0 and 1
    double minlk = 0.01d;
    double maxlk = 0.;
    // for each term in each cluster
    for (int i = 0; i < clustervecs.length; i++) {

      // create r0 zone sum vector
      // modification to reflect number of entries
      double[] r0sum = new double[MusicDictionary.getDictionary().size()];
      for (int j = 0; j < r0elements[i].length; j++) {
        if (r0elements[i][j] == -1) continue;
        if (clustertermsums[r0elements[i][j]] == 0) continue;
        Vec.addTo(
            r0sum, Vec.divide(clustervecs[r0elements[i][j]], clustertermsums[r0elements[i][j]]));
      }
      // create non-r1 zone sum vector
      double[] nonr1sum = Vec.cloneVector(summedterms);
      for (int j = 0; j < r1elements[i].length; j++) {
        if (r1elements[i][j] == -1) continue;
        if (clustertermsums[r1elements[i][j]] == 0) continue;
        Vec.subtractFrom(
            nonr1sum, Vec.divide(clustervecs[r1elements[i][j]], clustertermsums[r1elements[i][j]]));
      }

      for (int j = 0; j < clustervecs[i].length; j++) {
        //				// lagus kaski G0
        //				double fclust = clustertermsums[i]>0?clustervecs[i][j]/clustertermsums[i]:0;
        //				double fpen = summedterms[j];

        // lagus kaski G2
        double fclust = r0sum[j];
        double fpen = nonr1sum[j];

        if (clustervecs[i][j] == 0 // only accept words, that were on the island before G2
            || fclust == 0.
            || fpen == 0.) continue;
        Double ftc = new Double(fclust * fclust / fpen);

        // find max for normalization
        if (ftc > maxlk) maxlk = ftc;

        // smooth -> only values with score >= minlk
        if (ftc >= minlk) lkvalues[i][j] = ftc;
      }
    }

    //		// calculate all pairwise distances matrix of cos norm vectors
    //		Vector<Double> dists = new Vector<Double>();
    //		for (int i=0; i<lkvalues.length-1; i++) {
    //			for (int j=i+1; j<lkvalues.length; j++) {
    //				double[] cosNormA = Vec.cosineNormalize(Vec.cloneVector(lkvalues[i]));
    //				double[] cosNormB = Vec.cosineNormalize(Vec.cloneVector(lkvalues[j]));
    //				dists.addElement(new Double(Vec.euclDist(cosNormA, cosNormB)));
    //			}
    //		}
    //		Collections.sort(dists);
    //		System.out.println("sorted pairwise distances of all clusters");
    //		Iterator<Double> dit = dists.iterator();
    //		while (dit.hasNext()) {
    //			System.out.println(dit.next());
    //		}

    // init cluster formation map -> every unit is its own cluster
    int[] clusterassociations = new int[cols * rows];
    for (int i = 0; i < clusterassociations.length; i++) {
      clusterassociations[i] = i;
    }

    // copy original lkvalues (for coloring later)
    double[][] origlkvalues = new double[cols * rows][MusicDictionary.getDictionary().size()];
    for (int i = 0; i < cols * rows; i++) {
      for (int j = 0; j < MusicDictionary.getDictionary().size(); j++) {
        origlkvalues[i][j] = lkvalues[i][j];
      }
    }

    // find coherent regions on SOM
    findUnitClusters(clusterassociations, lkvalues, r0elements);

    //		// print clusterassoc map
    //		System.out.println("clusterassociations");
    //		for (int j=0; j<rows; j++) {		// for each row in codebook
    //			for (int i=0; i<cols; i++) {		// for each column in codebook
    //				int mappos = i*som.getNumberOfRows()+j;
    //				System.out.print(clusterassociations[mappos]+" ");
    //			}
    //			System.out.println("");
    //		}

    Vector[] clusterterms = new Vector[cols * rows];
    for (int i = 0; i < lkvalues.length; i++) {
      clusterterms[i] = new Vector();
      for (int j = 0; j < lkvalues[i].length; j++) {
        if (lkvalues[i][j] > minlk) {
          ObjectComparablePair ocp =
              new ObjectComparablePair(
                  MusicDictionary.getDictionary().elementAt(j),
                  new Double(
                      Math.min(maxlk, lkvalues[i][j]))); // use old max as upper bound for all value
          clusterterms[i].addElement(ocp);
        }
        // if (lkvalues[i][j] > maxlk) maxlk = lkvalues[i][j];
      }
      Collections.sort(clusterterms[i]);
      Collections.reverse(clusterterms[i]);
    }

    Vector<Vector<String>> mdmlabels = new Vector<Vector<String>>();
    // calc normalized lagus kaski
    for (int i = 0; i < cols; i++) { // for each column in codebook
      for (int j = 0; j < rows; j++) { // for each row in codebook
        int mappos = i * som.getNumberOfRows() + j;

        Vector<String> unitterms = new Vector<String>();
        // get terms for current map unit
        for (int k = 0; k < clusterterms[mappos].size() && k < maxTermsPerUnit; k++) {
          ObjectComparablePair ocp = (ObjectComparablePair) (clusterterms[mappos].elementAt(k));
          double laguskaski = ((Double) (ocp.getComparable())).doubleValue();
          String word = (String) (ocp.getObject());
          if (k < minTermsPerUnit || laguskaski > minlk) {
            double normlk = (laguskaski - minlk) / (maxlk - minlk);
            String wordandval = word + "_" + normlk; // TextTool.doubleToString(laguskaski, 3)+")";
            unitterms.addElement(wordandval);
          }
        }
        mdmlabels.addElement(unitterms);
      }
    }

    som.setMDM(this);
    this.setLabels(mdmlabels);
    this.setClusterAssociations(clusterassociations);
    this.setNeighborhood(r0elements);

    if (colorByPCA) {
      Vector[] colorclusterterms = new Vector[cols * rows];
      for (int i = 0; i < origlkvalues.length; i++) {
        colorclusterterms[i] = new Vector();
        for (int j = 0; j < origlkvalues[i].length; j++) {
          if (origlkvalues[i][j] > minlk) {
            ObjectComparablePair ocp =
                new ObjectComparablePair(
                    MusicDictionary.getDictionary().elementAt(j),
                    new Double(
                        Math.min(
                            maxlk,
                            origlkvalues[i][j]))); // use old max as upper bound for all value
            colorclusterterms[i].addElement(ocp);
          }
        }
        Collections.sort(colorclusterterms[i]);
        Collections.reverse(colorclusterterms[i]);
      }

      HashSet<String> remainingwords = new HashSet<String>();
      Hashtable<String, Double>[] mdmvalues = new Hashtable[cols * rows];
      // calc normalized lagus kaski
      for (int i = 0; i < cols; i++) { // for each column in codebook
        for (int j = 0; j < rows; j++) { // for each row in codebook
          int mappos = i * som.getNumberOfRows() + j;

          mdmvalues[mappos] = new Hashtable<String, Double>();
          Vector<String> unitterms = new Vector<String>();
          // get terms for current map unit
          for (int k = 0; k < colorclusterterms[mappos].size() && k < maxTermsPerUnit; k++) {
            ObjectComparablePair ocp =
                (ObjectComparablePair) (colorclusterterms[mappos].elementAt(k));
            double laguskaski = ((Double) (ocp.getComparable())).doubleValue();
            String word = (String) (ocp.getObject());
            if (k < minTermsPerUnit || laguskaski > minlk) {
              double normlk = (laguskaski - minlk) / (maxlk - minlk);

              //							remainingwords.add(word);
              //							mdmvalues[mappos].put(word, new Double(laguskaski));
            }
            if (k < 4) {
              remainingwords.add(word);
              mdmvalues[mappos].put(word, new Double(laguskaski));
            }
          }
          mdmlabels.addElement(unitterms);
        }
      }

      //			// remove all words that never occur
      //			Vector<double[]> relevantDimensions = new Vector<double[]>();
      //			double[][] featuredims = new Matrix(lkvalues).transpose().getArray();
      //			for (int i=0; i<featuredims.length; i++) {
      //				if (Stat.sum(featuredims[i]) > 0.1) {
      //					relevantDimensions.addElement(featuredims[i]);
      //				}
      //			}
      //			double[][] reduceddims = new double[relevantDimensions.size()][lkvalues.length];
      //			for (int i=0; i<relevantDimensions.size(); i++) {
      //				reduceddims[i] = relevantDimensions.elementAt(i);
      //			}
      //			cellColors = PCAProjectionToColor.getColorsForFeatures(new
      // Matrix(reduceddims).transpose().getArray());
      //			---------------------------

      // construct new vocabulary vector from remaining words
      // ignore all empty vectors (discard cells w/o entries)
      String[] remainingvocab = remainingwords.toArray(new String[0]);
      Hashtable<Integer, double[]> reducedVectorMapping = new Hashtable<Integer, double[]>();
      int[] colorarraymapping = new int[cols * rows];
      int usefulfeats = 0;
      for (int i = 0; i < cols * rows; i++) {
        double[] nufeat = HashtableTool.getDoubleVectorRepresentation(mdmvalues[i], remainingvocab);
        if (Stat.max(nufeat) == 0.) {
          colorarraymapping[i] = -1;
        } else {
          reducedVectorMapping.put(new Integer(usefulfeats), nufeat);
          colorarraymapping[i] = usefulfeats;
          usefulfeats++;
        }
      }
      // recreate nufeature set
      double[][] nufeatures = new double[usefulfeats][remainingvocab.length];
      for (int i = 0; i < nufeatures.length; i++) {
        nufeatures[i] = Vec.cosineNormalize(reducedVectorMapping.get(new Integer(i)));
      }
      //			System.out.println(TextTool.toMatlabFormat(nufeatures));

      PCA pca = new PCA(nufeatures, 20);
      Color[] reducedSetCellColors =
          SammonsMappingToColor.getColorsForFeatures(pca.getPCATransformedDataAsDoubleArray());

      // recreate Color assignment
      cellColors = new Color[colorarraymapping.length];
      for (int i = 0; i < cellColors.length; i++) {
        if (colorarraymapping[i] == -1) cellColors[i] = Color.white;
        else cellColors[i] = reducedSetCellColors[colorarraymapping[i]];
      }

      //			cellColors = SammonsMappingToColor.getColorsForFeatures(new PCA(lkvalues,
      // 20).getPCATransformedDataAsDoubleArray());
    } else {
      cellColors = new Color[cols * rows];
    }

    for (Enumeration e = threadlisteners.elements(); e.hasMoreElements(); ) {
      ThreadListener tl = (ThreadListener) (e.nextElement());
      tl.threadEnded();
    }
  }
Beispiel #6
0
 public static Stat getRootAsStat(ByteBuffer _bb, Stat obj) {
   _bb.order(ByteOrder.LITTLE_ENDIAN);
   return (obj.__init(_bb.getInt(_bb.position()) + _bb.position(), _bb));
 }