Beispiel #1
0
  // 构造一个tri-trainer分类器。
  public Tritrainer(
      String classifier, String trainingIns_File, String testIns_File, double precentage) {
    try {
      this.classifier1 = (Classifier) Class.forName(classifier).newInstance();
      this.classifier2 = (Classifier) Class.forName(classifier).newInstance();
      this.classifier3 = (Classifier) Class.forName(classifier).newInstance();

      Instances trainingInstances = Util.getInstances(trainingIns_File);

      // 将trainIns_File按照precentage和(1-precentage)的比例切割成labeledIns和unlabeledIns;
      int length = trainingInstances.numInstances();
      int i = new Double(length * precentage).intValue();
      labeledIns = new Instances(trainingInstances, 0);
      for (int j = 0; j < i; j++) {
        labeledIns.add(trainingInstances.firstInstance());
        trainingInstances.delete(0);
      }
      unlabeledIns = trainingInstances;
      testIns = Util.getInstances(testIns_File);

      Init();
    } catch (Exception e) {

    }
  }
Beispiel #2
0
  //	计算h1,h2分类器共同的分类错误率;
  public double measureBothError(Classifier h1, Classifier h2, Instances test) {
    int m = test.numInstances();
    double value1, value2, value;
    int error = 0, total = 0;
    try {
      for (int i = 0; i < m; i++) {
        value = test.instance(i).classValue();
        value1 = h1.classifyInstance(test.instance(i));
        value2 = h2.classifyInstance(test.instance(i));

        // 两分类器做出相同决策
        if (value1 == value2) {
          // 两分类器做出相同决策的样本数量
          total++;

          // 两分类器做出相同错误决策
          if (value != value1) {
            //	两分类器做出相同错误决策的样本数量
            error++;
          }
        }
      }
    } catch (Exception e) {
      System.out.println(e);
    }
    // System.out.println("m:=" + m);
    // System.out.println("error:=" + error +"; total:=" + total);

    // 两个分类器的分类错误率= 两分类器做出相同错误决策的样本数量/两分类器做出相同决策的样本数量
    return (error * 1.0) / total;
  }
Beispiel #3
0
  /**
   * Generate artificial training examples.
   *
   * @param artSize size of examples set to create
   * @param data training data
   * @return the set of unlabeled artificial examples
   */
  protected Instances generateArtificialData(int artSize, Instances data) {
    int numAttributes = data.numAttributes();
    Instances artData = new Instances(data, artSize);
    double[] att;
    Instance artInstance;

    for (int i = 0; i < artSize; i++) {
      att = new double[numAttributes];
      for (int j = 0; j < numAttributes; j++) {
        if (data.attribute(j).isNominal()) {
          // Select nominal value based on the frequency of occurence in the training data
          double[] stats = (double[]) m_AttributeStats.get(j);
          att[j] = (double) selectIndexProbabilistically(stats);
        } else if (data.attribute(j).isNumeric()) {
          // Generate numeric value from the Guassian distribution
          // defined by the mean and std dev of the attribute
          double[] stats = (double[]) m_AttributeStats.get(j);
          att[j] = (m_Random.nextGaussian() * stats[1]) + stats[0];
        } else System.err.println("Decorate can only handle numeric and nominal values.");
      }
      artInstance = new Instance(1.0, att);
      artData.add(artInstance);
    }
    return artData;
  }
Beispiel #4
0
 // 将样本集中裁剪提取成m个样本组成的集合;
 public void SubSample(Instances inst, int m) {
   inst.randomize(new Random());
   while (inst.numInstances() != m) {
     inst.delete(0);
   }
   // System.out.println("subsample:=" + inst.numInstances() + " m:=" + m );
 }
Beispiel #5
0
 /**
  * GetKs - return [K_1,K_2,...,K_L] where each Y_j \in {1,...,K_j}. In the multi-label case, K[j]
  * = 2 for all j = 1,...,L.
  *
  * @param D a dataset
  * @return an array of the number of values that each label can take
  */
 private static int[] getKs(Instances D) {
   int L = D.classIndex();
   int K[] = new int[L];
   for (int k = 0; k < L; k++) {
     K[k] = D.attribute(k).numValues();
   }
   return K;
 }
  public int getClusterNumber(String objectID) {
    int datasetIndex = -1;

    for (int i = 0; i < m_Sequences.numInstances(); i++) {
      if (objectID.equals(m_Sequences.instance(i).stringValue(0))) datasetIndex = i;
    }

    return cluster[datasetIndex];
  }
Beispiel #7
0
  protected void initMinMax(Instances data) {
    m_Min = new double[data.numAttributes()];
    m_Max = new double[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
      m_Min[i] = m_Max[i] = Double.NaN;
    }

    for (int i = 0; i < data.numInstances(); i++) {
      updateMinMax(data.instance(i));
    }
  }
Beispiel #8
0
  /**
   * Labels the artificially generated data.
   *
   * @param artData the artificially generated instances
   * @exception Exception if instances cannot be labeled successfully
   */
  protected void labelData(Instances artData) throws Exception {
    Instance curr;
    double[] probs;

    for (int i = 0; i < artData.numInstances(); i++) {
      curr = artData.instance(i);
      // compute the class membership probs predicted by the current ensemble
      probs = distributionForInstance(curr);
      // select class label inversely proportional to the ensemble predictions
      curr.setClassValue(inverseLabel(probs));
    }
  }
Beispiel #9
0
  /**
   * Computes the error in classification on the given data.
   *
   * @param data the instances to be classified
   * @return classification error
   * @exception Exception if error can not be computed successfully
   */
  protected double computeError(Instances data) throws Exception {
    double error = 0.0;
    int numInstances = data.numInstances();
    Instance curr;

    for (int i = 0; i < numInstances; i++) {
      curr = data.instance(i);
      // Check if the instance has been misclassified
      if (curr.classValue() != ((int) classifyInstance(curr))) error++;
    }
    return (error / numInstances);
  }
Beispiel #10
0
  /**
   * Inserts an instance into the hash table
   *
   * @param inst instance to be inserted
   * @param instA to create the hash key from
   * @throws Exception if the instance can't be inserted
   */
  private void insertIntoTable(Instance inst, double[] instA) throws Exception {

    double[] tempClassDist2;
    double[] newDist;
    DecisionTableHashKey thekey;

    if (instA != null) {
      thekey = new DecisionTableHashKey(instA);
    } else {
      thekey = new DecisionTableHashKey(inst, inst.numAttributes(), false);
    }

    // see if this one is already in the table
    tempClassDist2 = (double[]) m_entries.get(thekey);
    if (tempClassDist2 == null) {
      if (m_classIsNominal) {
        newDist = new double[m_theInstances.classAttribute().numValues()];

        // Leplace estimation
        for (int i = 0; i < m_theInstances.classAttribute().numValues(); i++) {
          newDist[i] = 1.0;
        }

        newDist[(int) inst.classValue()] = inst.weight();

        // add to the table
        m_entries.put(thekey, newDist);
      } else {
        newDist = new double[2];
        newDist[0] = inst.classValue() * inst.weight();
        newDist[1] = inst.weight();

        // add to the table
        m_entries.put(thekey, newDist);
      }
    } else {

      // update the distribution for this instance
      if (m_classIsNominal) {
        tempClassDist2[(int) inst.classValue()] += inst.weight();

        // update the table
        m_entries.put(thekey, tempClassDist2);
      } else {
        tempClassDist2[0] += (inst.classValue() * inst.weight());
        tempClassDist2[1] += inst.weight();

        // update the table
        m_entries.put(thekey, tempClassDist2);
      }
    }
  }
  /**
   * Generates a clusterer by the mean of spectral clustering algorithm.
   *
   * @param data set of instances serving as training data
   * @exception Exception if the clusterer has not been generated successfully
   */
  public void buildClusterer(Instances data) throws java.lang.Exception {
    m_Sequences = new Instances(data);
    int n = data.numInstances();
    int k = data.numAttributes();
    DoubleMatrix2D w;
    if (useSparseMatrix) w = DoubleFactory2D.sparse.make(n, n);
    else w = DoubleFactory2D.dense.make(n, n);
    double[][] v1 = new double[n][];
    for (int i = 0; i < n; i++) v1[i] = data.instance(i).toDoubleArray();
    v = DoubleFactory2D.dense.make(v1);
    double sigma_sq = sigma * sigma;
    // Sets up similarity matrix
    for (int i = 0; i < n; i++)
      for (int j = i; j < n; j++) {
        /*double dist = distnorm2(v.viewRow(i), v.viewRow(j));
        if((r == -1) || (dist < r)) {
          double sim = Math.exp(- (dist * dist) / (2 * sigma_sq));
          w.set(i, j, sim);
          w.set(j, i, sim);
        }*/
        /* String [] key = {data.instance(i).stringValue(0), data.instance(j).stringValue(0)};
        System.out.println(key[0]);
        System.out.println(key[1]);
        System.out.println(simScoreMap.containsKey(key));
        Double simValue = simScoreMap.get(key);*/

        double sim = sim_matrix[i][j];
        w.set(i, j, sim);
        w.set(j, i, sim);
      }

    // Partitions points
    int[][] p = partition(w, alpha_star);

    // Deploys results
    numOfClusters = p.length;
    cluster = new int[n];
    for (int i = 0; i < p.length; i++) for (int j = 0; j < p[i].length; j++) cluster[p[i][j]] = i;

    // System.out.println("Final partition:");
    // UtilsJS.printMatrix(p);
    // System.out.println("Cluster:\n");
    // UtilsJS.printArray(cluster);
    this.numOfClusters = cluster[Utils.maxIndex(cluster)] + 1;
    //  System.out.println("Num clusters:\t"+this.numOfClusters);
  }
Beispiel #12
0
 protected void updateMinDistance(
     double[] minDistance, boolean[] selected, Instances data, Instance center) {
   for (int i = 0; i < selected.length; i++)
     if (!selected[i]) {
       double d = distance(center, data.instance(i));
       if (d < minDistance[i]) minDistance[i] = d;
     }
 }
Beispiel #13
0
 // 通过h1,h2分类器学习样本集,将h1,h2分类决策相同的样本放入L中,得到标记集合;
 public void updateL(Classifier h1, Classifier h2, Instances L, Instances test) {
   int length = unlabeledIns.numInstances();
   double value1 = 0.0, value2 = 0.0;
   try {
     for (int i = 0; i < length; i++) {
       value1 = h1.classifyInstance(test.instance(i));
       value2 = h2.classifyInstance(test.instance(i));
       if (value1 == value2) {
         // 当两个分类器做出相同决策时重新标记样本的类别;
         test.instance(i).setClassValue(value1);
         L.add(test.instance(i));
       }
     }
   } catch (Exception e) {
     System.out.println(e);
   }
   // return false;
 }
Beispiel #14
0
  /**
   * loads the given dataset and prints the Capabilities necessary to process it.
   *
   * <p>Valid parameters:
   *
   * <p>-file filename <br>
   * the file to load
   *
   * <p>-c index the explicit index of the class attribute (default: none)
   *
   * @param args the commandline arguments
   * @throws Exception if something goes wrong
   */
  public static void main(String[] args) throws Exception {
    String tmpStr;
    String filename;
    DataSource source;
    Instances data;
    int classIndex;
    Capabilities cap;
    Iterator iter;

    if (args.length == 0) {
      System.out.println(
          "\nUsage: " + Capabilities.class.getName() + " -file <dataset> [-c <class index>]\n");
      return;
    }

    // get parameters
    tmpStr = Utils.getOption("file", args);
    if (tmpStr.length() == 0) throw new Exception("No file provided with option '-file'!");
    else filename = tmpStr;

    tmpStr = Utils.getOption("c", args);
    if (tmpStr.length() != 0) {
      if (tmpStr.equals("first")) classIndex = 0;
      else if (tmpStr.equals("last")) classIndex = -2; // last
      else classIndex = Integer.parseInt(tmpStr) - 1;
    } else {
      classIndex = -3; // not set
    }

    // load data
    source = new DataSource(filename);
    if (classIndex == -3) data = source.getDataSet();
    else if (classIndex == -2) data = source.getDataSet(source.getStructure().numAttributes() - 1);
    else data = source.getDataSet(classIndex);

    // determine and print capabilities
    cap = forInstances(data);
    System.out.println("File: " + filename);
    System.out.println(
        "Class index: " + ((data.classIndex() == -1) ? "not set" : "" + (data.classIndex() + 1)));
    System.out.println("Capabilities:");
    iter = cap.capabilities();
    while (iter.hasNext()) System.out.println("- " + iter.next());
  }
Beispiel #15
0
  /**
   * Calculates the distance between two instances
   *
   * @param test the first instance
   * @param train the second instance
   * @return the distance between the two given instances, between 0 and 1
   */
  protected double distance(Instance first, Instance second) {

    double distance = 0;
    int firstI, secondI;

    for (int p1 = 0, p2 = 0; p1 < first.numValues() || p2 < second.numValues(); ) {
      if (p1 >= first.numValues()) {
        firstI = m_instances.numAttributes();
      } else {
        firstI = first.index(p1);
      }
      if (p2 >= second.numValues()) {
        secondI = m_instances.numAttributes();
      } else {
        secondI = second.index(p2);
      }
      if (firstI == m_instances.classIndex()) {
        p1++;
        continue;
      }
      if (secondI == m_instances.classIndex()) {
        p2++;
        continue;
      }
      double diff;
      if (firstI == secondI) {
        diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2));
        p1++;
        p2++;
      } else if (firstI > secondI) {
        diff = difference(secondI, 0, second.valueSparse(p2));
        p2++;
      } else {
        diff = difference(firstI, first.valueSparse(p1), 0);
        p1++;
      }
      distance += diff * diff;
    }

    return Math.sqrt(distance / m_instances.numAttributes());
  }
Beispiel #16
0
 /**
  * clusters an instance that has been through the filters
  *
  * @param instance the instance to assign a cluster to
  * @return a cluster number
  */
 protected int clusterProcessedInstance(Instance instance) {
   double minDist = Double.MAX_VALUE;
   int bestCluster = 0;
   for (int i = 0; i < m_NumClusters; i++) {
     double dist = distance(instance, m_ClusterCentroids.instance(i));
     if (dist < minDist) {
       minDist = dist;
       bestCluster = i;
     }
   }
   return bestCluster;
 }
Beispiel #17
0
  /**
   * Compute and store statistics required for generating artificial data.
   *
   * @param data training instances
   * @exception Exception if statistics could not be calculated successfully
   */
  protected void computeStats(Instances data) throws Exception {
    int numAttributes = data.numAttributes();
    m_AttributeStats = new Vector(numAttributes); // use to map attributes to their stats

    for (int j = 0; j < numAttributes; j++) {
      if (data.attribute(j).isNominal()) {
        // Compute the probability of occurence of each distinct value
        int[] nomCounts = (data.attributeStats(j)).nominalCounts;
        double[] counts = new double[nomCounts.length];
        if (counts.length < 2)
          throw new Exception("Nominal attribute has less than two distinct values!");
        // Perform Laplace smoothing
        for (int i = 0; i < counts.length; i++) counts[i] = nomCounts[i] + 1;
        Utils.normalize(counts);
        double[] stats = new double[counts.length - 1];
        stats[0] = counts[0];
        // Calculate cumulative probabilities
        for (int i = 1; i < stats.length; i++) stats[i] = stats[i - 1] + counts[i];
        m_AttributeStats.add(j, stats);
      } else if (data.attribute(j).isNumeric()) {
        // Get mean and standard deviation from the training data
        double[] stats = new double[2];
        stats[0] = data.meanOrMode(j);
        stats[1] = Math.sqrt(data.variance(j));
        m_AttributeStats.add(j, stats);
      } else System.err.println("Decorate can only handle numeric and nominal values.");
    }
  }
Beispiel #18
0
  /**
   * Buildclassifier selects a classifier from the set of classifiers by minimising error on the
   * training data.
   *
   * @param data the training data to be used for generating the boosted classifier.
   * @exception Exception if the classifier could not be built successfully
   */
  public void buildClassifier(Instances data) throws Exception {

    if (m_Classifiers.length == 0) {
      throw new Exception("No base classifiers have been set!");
    }
    Instances newData = new Instances(data);
    newData.deleteWithMissingClass();
    newData.randomize(new Random(m_Seed));
    if (newData.classAttribute().isNominal() && (m_NumXValFolds > 1))
      newData.stratify(m_NumXValFolds);
    Instances train = newData; // train on all data by default
    Instances test = newData; // test on training data by default
    Classifier bestClassifier = null;
    int bestIndex = -1;
    double bestPerformance = Double.NaN;
    int numClassifiers = m_Classifiers.length;
    for (int i = 0; i < numClassifiers; i++) {
      Classifier currentClassifier = getClassifier(i);
      Evaluation evaluation;
      if (m_NumXValFolds > 1) {
        evaluation = new Evaluation(newData);
        for (int j = 0; j < m_NumXValFolds; j++) {
          train = newData.trainCV(m_NumXValFolds, j);
          test = newData.testCV(m_NumXValFolds, j);
          currentClassifier.buildClassifier(train);
          evaluation.setPriors(train);
          evaluation.evaluateModel(currentClassifier, test);
        }
      } else {
        currentClassifier.buildClassifier(train);
        evaluation = new Evaluation(train);
        evaluation.evaluateModel(currentClassifier, test);
      }

      double error = evaluation.errorRate();
      if (m_Debug) {
        System.err.println(
            "Error rate: "
                + Utils.doubleToString(error, 6, 4)
                + " for classifier "
                + currentClassifier.getClass().getName());
      }

      if ((i == 0) || (error < bestPerformance)) {
        bestClassifier = currentClassifier;
        bestPerformance = error;
        bestIndex = i;
      }
    }
    m_ClassifierIndex = bestIndex;
    m_Classifier = bestClassifier;
    if (m_NumXValFolds > 1) {
      m_Classifier.buildClassifier(newData);
    }
  }
Beispiel #19
0
  /**
   * Gets the subset of instances that apply to a particluar branch of the split. If the branch
   * index is -1, the subset will consist of those instances that don't apply to any branch.
   *
   * @param branch the index of the branch
   * @param sourceInstances the instances from which to find the subset
   * @return the set of instances that apply
   */
  public ReferenceInstances instancesDownBranch(int branch, Instances instances) {

    ReferenceInstances filteredInstances = new ReferenceInstances(instances, 1);
    if (branch == -1) {
      for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) {
        Instance inst = (Instance) e.nextElement();
        if (inst.isMissing(attIndex)) filteredInstances.addReference(inst);
      }
    } else if (branch == 0) {
      for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) {
        Instance inst = (Instance) e.nextElement();
        if (!inst.isMissing(attIndex) && inst.value(attIndex) < splitPoint)
          filteredInstances.addReference(inst);
      }
    } else {
      for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) {
        Instance inst = (Instance) e.nextElement();
        if (!inst.isMissing(attIndex) && inst.value(attIndex) >= splitPoint)
          filteredInstances.addReference(inst);
      }
    }
    return filteredInstances;
  }
Beispiel #20
0
  /**
   * return a string describing this clusterer
   *
   * @return a description of the clusterer as a string
   */
  public String toString() {
    StringBuffer temp = new StringBuffer();

    temp.append("\n FarthestFirst\n==============\n");

    temp.append("\nCluster centroids:\n");
    for (int i = 0; i < m_NumClusters; i++) {
      temp.append("\nCluster " + i + "\n\t");
      for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) {
        if (m_ClusterCentroids.attribute(j).isNominal()) {
          temp.append(
              " "
                  + m_ClusterCentroids
                      .attribute(j)
                      .value((int) m_ClusterCentroids.instance(i).value(j)));
        } else {
          temp.append(" " + m_ClusterCentroids.instance(i).value(j));
        }
      }
    }
    temp.append("\n\n");
    return temp.toString();
  }
Beispiel #21
0
  /** @param args */
  private void Init() {
    testIns.setClassIndex(testIns.numAttributes() - 1);
    labeledIns.setClassIndex(labeledIns.numAttributes() - 1);
    unlabeledIns.setClassIndex(unlabeledIns.numAttributes() - 1);

    class_Array[0] = classifier1;
    class_Array[1] = classifier2;
    class_Array[2] = classifier3;
  }
  public void buildClusterer(ArrayList<String> seqDB, double[][] sm) {
    seqList = seqDB;

    this.setSimMatrix(sm);

    Attribute seqString = new Attribute("sequence", (FastVector) null);
    FastVector attrInfo = new FastVector();
    attrInfo.addElement(seqString);
    Instances data = new Instances("data", attrInfo, 0);

    for (int i = 0; i < seqList.size(); i++) {
      Instance currentInst = new Instance(1);
      currentInst.setDataset(data);
      currentInst.setValue(0, seqList.get(i));
      data.add(currentInst);
    }

    try {
      buildClusterer(data);
    } catch (Exception e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
  }
  @Test
  public void testSplittable() throws SchedulerException {

    List<VM> vms = Arrays.asList(vm1, vm2, vm3);
    Collection<Collection<Node>> parts = new ArrayList<>();
    parts.add(Arrays.asList(n1, n2));
    parts.add(Arrays.asList(n3));
    parts.add(Arrays.asList(n4));

    Among single = new Among(vms, parts);

    /*
    N1 v1 v2
    N2 v3
    ---
    N3 v4
    --
    N4 v5
    */
    FixedNodeSetsPartitioning partitionner = new FixedNodeSetsPartitioning(parts);
    partitionner.setPartitions(parts);
    List<Instance> instances =
        partitionner.split(
            new DefaultParameters(),
            new Instance(mo, Collections.<SatConstraint>emptyList(), new MinMTTR()));

    TIntIntHashMap vmIndex = Instances.makeVMIndex(instances);
    TIntIntHashMap nodeIndex = Instances.makeNodeIndex(instances);
    splitter.split(single, new Instance(mo, new MinMTTR()), instances, vmIndex, nodeIndex);
    Among a = (Among) instances.get(0).getSatConstraints().iterator().next();
    Assert.assertEquals(a.getGroupsOfNodes().size(), 1);
    Assert.assertEquals(a.getInvolvedNodes(), Arrays.asList(n1, n2));
    for (Instance i : instances) {
      System.out.println(i.getSatConstraints());
    }
  }
Beispiel #24
0
  /**
   * Generates a clusterer. Has to initialize all fields of the clusterer that are not being set via
   * options.
   *
   * @param data set of instances serving as training data
   * @exception Exception if the clusterer has not been generated successfully
   */
  public void buildClusterer(Instances data) throws Exception {

    // long start = System.currentTimeMillis();
    if (data.checkForStringAttributes()) {
      throw new Exception("Can't handle string attributes!");
    }

    m_ReplaceMissingFilter = new ReplaceMissingValues();
    m_ReplaceMissingFilter.setInputFormat(data);
    m_instances = Filter.useFilter(data, m_ReplaceMissingFilter);

    initMinMax(m_instances);

    m_ClusterCentroids = new Instances(m_instances, m_NumClusters);

    int n = m_instances.numInstances();
    Random r = new Random(m_Seed);
    boolean[] selected = new boolean[n];
    double[] minDistance = new double[n];

    for (int i = 0; i < n; i++) minDistance[i] = Double.MAX_VALUE;

    int firstI = r.nextInt(n);
    m_ClusterCentroids.add(m_instances.instance(firstI));
    selected[firstI] = true;

    updateMinDistance(minDistance, selected, m_instances, m_instances.instance(firstI));

    if (m_NumClusters > n) m_NumClusters = n;

    for (int i = 1; i < m_NumClusters; i++) {
      int nextI = farthestAway(minDistance, selected);
      m_ClusterCentroids.add(m_instances.instance(nextI));
      selected[nextI] = true;
      updateMinDistance(minDistance, selected, m_instances, m_instances.instance(nextI));
    }

    m_instances = new Instances(m_instances, 0);
    // long end = System.currentTimeMillis();
    // System.out.println("Clustering Time = " + (end-start));
  }
Beispiel #25
0
  /** Computes the difference between two given attribute values. */
  protected double difference(int index, double val1, double val2) {

    switch (m_instances.attribute(index).type()) {
      case Attribute.NOMINAL:

        // If attribute is nominal
        if (Instance.isMissingValue(val1)
            || Instance.isMissingValue(val2)
            || ((int) val1 != (int) val2)) {
          return 1;
        } else {
          return 0;
        }
      case Attribute.NUMERIC:

        // If attribute is numeric
        if (Instance.isMissingValue(val1) || Instance.isMissingValue(val2)) {
          if (Instance.isMissingValue(val1) && Instance.isMissingValue(val2)) {
            return 1;
          } else {
            double diff;
            if (Instance.isMissingValue(val2)) {
              diff = norm(val1, index);
            } else {
              diff = norm(val2, index);
            }
            if (diff < 0.5) {
              diff = 1.0 - diff;
            }
            return diff;
          }
        } else {
          return norm(val1, index) - norm(val2, index);
        }
      default:
        return 0;
    }
  }
Beispiel #26
0
 /**
  * Add new instances to the given set of instances.
  *
  * @param data given instances
  * @param newData set of instances to add to given instances
  */
 protected void addInstances(Instances data, Instances newData) {
   for (int i = 0; i < newData.numInstances(); i++) data.add(newData.instance(i));
 }
Beispiel #27
0
 /**
  * Removes a specified number of instances from the given set of instances.
  *
  * @param data given instances
  * @param numRemove number of instances to delete from the given instances
  */
 protected void removeInstances(Instances data, int numRemove) {
   int num = data.numInstances();
   for (int i = num - 1; i > num - 1 - numRemove; i--) {
     data.delete(i);
   }
 }
Beispiel #28
0
 /**
  * Tests the given data, whether it can be processed by the handler, given its capabilities.
  * Classifiers implementing the <code>MultiInstanceCapabilitiesHandler</code> interface are
  * checked automatically for their multi-instance Capabilities (if no bags, then only the
  * bag-structure, otherwise only the first bag).
  *
  * @param data the data to test
  * @return true if all the tests succeeded
  * @see #test(Instances, int, int)
  */
 public boolean test(Instances data) {
   return test(data, 0, data.numAttributes() - 1);
 }
Beispiel #29
0
  /**
   * Build Decorate classifier
   *
   * @param data the training data to be used for generating the classifier
   * @exception Exception if the classifier could not be built successfully
   */
  public void buildClassifier(Instances data) throws Exception {
    if (m_Classifier == null) {
      throw new Exception("A base classifier has not been specified!");
    }
    if (data.checkForStringAttributes()) {
      throw new UnsupportedAttributeTypeException("Cannot handle string attributes!");
    }
    if (data.classAttribute().isNumeric()) {
      throw new UnsupportedClassTypeException("Decorate can't handle a numeric class!");
    }
    if (m_NumIterations < m_DesiredSize)
      throw new Exception("Max number of iterations must be >= desired ensemble size!");

    // initialize random number generator
    if (m_Seed == -1) m_Random = new Random();
    else m_Random = new Random(m_Seed);

    int i = 1; // current committee size
    int numTrials = 1; // number of Decorate iterations
    Instances divData = new Instances(data); // local copy of data - diversity data
    divData.deleteWithMissingClass();
    Instances artData = null; // artificial data

    // compute number of artficial instances to add at each iteration
    int artSize = (int) (Math.abs(m_ArtSize) * divData.numInstances());
    if (artSize == 0) artSize = 1; // atleast add one random example
    computeStats(data); // Compute training data stats for creating artificial examples

    // initialize new committee
    m_Committee = new Vector();
    Classifier newClassifier = m_Classifier;
    newClassifier.buildClassifier(divData);
    m_Committee.add(newClassifier);
    double eComm = computeError(divData); // compute ensemble error
    if (m_Debug)
      System.out.println(
          "Initialize:\tClassifier " + i + " added to ensemble. Ensemble error = " + eComm);

    // repeat till desired committee size is reached OR the max number of iterations is exceeded
    while (i < m_DesiredSize && numTrials < m_NumIterations) {
      // Generate artificial training examples
      artData = generateArtificialData(artSize, data);

      // Label artificial examples
      labelData(artData);
      addInstances(divData, artData); // Add new artificial data

      // Build new classifier
      Classifier tmp[] = Classifier.makeCopies(m_Classifier, 1);
      newClassifier = tmp[0];
      newClassifier.buildClassifier(divData);
      // Remove all the artificial data
      removeInstances(divData, artSize);

      // Test if the new classifier should be added to the ensemble
      m_Committee.add(newClassifier); // add new classifier to current committee
      double currError = computeError(divData);
      if (currError <= eComm) { // adding the new member did not increase the error
        i++;
        eComm = currError;
        if (m_Debug)
          System.out.println(
              "Iteration: "
                  + (1 + numTrials)
                  + "\tClassifier "
                  + i
                  + " added to ensemble. Ensemble error = "
                  + eComm);
      } else { // reject the current classifier because it increased the ensemble error
        m_Committee.removeElementAt(m_Committee.size() - 1); // pop the last member
      }
      numTrials++;
    }
  }
Beispiel #30
0
  /**
   * Tests a certain range of attributes of the given data, whether it can be processed by the
   * handler, given its capabilities. Classifiers implementing the <code>
   * MultiInstanceCapabilitiesHandler</code> interface are checked automatically for their
   * multi-instance Capabilities (if no bags, then only the bag-structure, otherwise only the first
   * bag).
   *
   * @param data the data to test
   * @param fromIndex the range of attributes - start (incl.)
   * @param toIndex the range of attributes - end (incl.)
   * @return true if all the tests succeeded
   * @see MultiInstanceCapabilitiesHandler
   * @see #m_InstancesTest
   * @see #m_MissingValuesTest
   * @see #m_MissingClassValuesTest
   * @see #m_MinimumNumberInstancesTest
   */
  public boolean test(Instances data, int fromIndex, int toIndex) {
    int i;
    int n;
    int m;
    Attribute att;
    Instance inst;
    boolean testClass;
    Capabilities cap;
    boolean missing;
    Iterator iter;

    // shall we test the data?
    if (!m_InstancesTest) return true;

    // no Capabilities? -> warning
    if ((m_Capabilities.size() == 0)
        || ((m_Capabilities.size() == 1) && handles(Capability.NO_CLASS)))
      System.err.println(createMessage("No capabilities set!"));

    // any attributes?
    if (toIndex - fromIndex < 0) {
      m_FailReason = new WekaException(createMessage("No attributes!"));
      return false;
    }

    // do wee need to test the class attribute, i.e., is the class attribute
    // within the range of attributes?
    testClass =
        (data.classIndex() > -1)
            && (data.classIndex() >= fromIndex)
            && (data.classIndex() <= toIndex);

    // attributes
    for (i = fromIndex; i <= toIndex; i++) {
      att = data.attribute(i);

      // class is handled separately
      if (i == data.classIndex()) continue;

      // check attribute types
      if (!test(att)) return false;
    }

    // class
    if (!handles(Capability.NO_CLASS) && (data.classIndex() == -1)) {
      m_FailReason = new UnassignedClassException(createMessage("Class attribute not set!"));
      return false;
    }

    // special case: no class attribute can be handled
    if (handles(Capability.NO_CLASS) && (data.classIndex() > -1)) {
      cap = getClassCapabilities();
      cap.disable(Capability.NO_CLASS);
      iter = cap.capabilities();
      if (!iter.hasNext()) {
        m_FailReason = new WekaException(createMessage("Cannot handle any class attribute!"));
        return false;
      }
    }

    if (testClass && !handles(Capability.NO_CLASS)) {
      att = data.classAttribute();
      if (!test(att, true)) return false;

      // special handling of RELATIONAL class
      // TODO: store additional Capabilities for this case

      // missing class labels
      if (m_MissingClassValuesTest) {
        if (!handles(Capability.MISSING_CLASS_VALUES)) {
          for (i = 0; i < data.numInstances(); i++) {
            if (data.instance(i).classIsMissing()) {
              m_FailReason =
                  new WekaException(createMessage("Cannot handle missing class values!"));
              return false;
            }
          }
        } else {
          if (m_MinimumNumberInstancesTest) {
            int hasClass = 0;

            for (i = 0; i < data.numInstances(); i++) {
              if (!data.instance(i).classIsMissing()) hasClass++;
            }

            // not enough instances with class labels?
            if (hasClass < getMinimumNumberInstances()) {
              m_FailReason =
                  new WekaException(
                      createMessage(
                          "Not enough training instances with class labels (required: "
                              + getMinimumNumberInstances()
                              + ", provided: "
                              + hasClass
                              + ")!"));
              return false;
            }
          }
        }
      }
    }

    // missing values
    if (m_MissingValuesTest) {
      if (!handles(Capability.MISSING_VALUES)) {
        missing = false;
        for (i = 0; i < data.numInstances(); i++) {
          inst = data.instance(i);

          if (inst instanceof SparseInstance) {
            for (m = 0; m < inst.numValues(); m++) {
              n = inst.index(m);

              // out of scope?
              if (n < fromIndex) continue;
              if (n > toIndex) break;

              // skip class
              if (n == inst.classIndex()) continue;

              if (inst.isMissing(n)) {
                missing = true;
                break;
              }
            }
          } else {
            for (n = fromIndex; n <= toIndex; n++) {
              // skip class
              if (n == inst.classIndex()) continue;

              if (inst.isMissing(n)) {
                missing = true;
                break;
              }
            }
          }

          if (missing) {
            m_FailReason =
                new NoSupportForMissingValuesException(
                    createMessage("Cannot handle missing values!"));
            return false;
          }
        }
      }
    }

    // instances
    if (m_MinimumNumberInstancesTest) {
      if (data.numInstances() < getMinimumNumberInstances()) {
        m_FailReason =
            new WekaException(
                createMessage(
                    "Not enough training instances (required: "
                        + getMinimumNumberInstances()
                        + ", provided: "
                        + data.numInstances()
                        + ")!"));
        return false;
      }
    }

    // Multi-Instance? -> check structure (regardless of attribute range!)
    if (handles(Capability.ONLY_MULTIINSTANCE)) {
      // number of attributes?
      if (data.numAttributes() != 3) {
        m_FailReason =
            new WekaException(
                createMessage("Incorrect Multi-Instance format, must be 'bag-id, bag, class'!"));
        return false;
      }

      // type of attributes and position of class?
      if (!data.attribute(0).isNominal()
          || !data.attribute(1).isRelationValued()
          || (data.classIndex() != data.numAttributes() - 1)) {
        m_FailReason =
            new WekaException(
                createMessage(
                    "Incorrect Multi-Instance format, must be 'NOMINAL att, RELATIONAL att, CLASS att'!"));
        return false;
      }

      // check data immediately
      if (getOwner() instanceof MultiInstanceCapabilitiesHandler) {
        MultiInstanceCapabilitiesHandler handler = (MultiInstanceCapabilitiesHandler) getOwner();
        cap = handler.getMultiInstanceCapabilities();
        boolean result;
        if (data.numInstances() > 0) result = cap.test(data.attribute(1).relation(0));
        else result = cap.test(data.attribute(1).relation());

        if (!result) {
          m_FailReason = cap.m_FailReason;
          return false;
        }
      }
    }

    // passed all tests!
    return true;
  }