Beispiel #1
0
 public Set<Edge> getNonadjacencies() {
   Graph complete = GraphUtils.completeGraph(graph);
   Set<Edge> nonAdjacencies = complete.getEdges();
   Graph undirected = GraphUtils.undirectedGraph(graph);
   nonAdjacencies.removeAll(undirected.getEdges());
   return new HashSet<Edge>(nonAdjacencies);
 }
Beispiel #2
0
  // TODO Fix this.
  private List<ScoredGraph> arrangeGraphs() {
    IGesRunner runner = (IGesRunner) getAlgorithmRunner();
    Graph resultGraph = runner.getResultGraph();

    List<ScoredGraph> topGraphs = runner.getTopGraphs();

    if (topGraphs == null) topGraphs = new ArrayList<ScoredGraph>();

    Graph latestWorkbenchGraph = runner.getParams().getSourceGraph();
    Graph sourceGraph = runner.getSourceGraph();

    boolean arrangedAll = false;

    for (ScoredGraph topGraph1 : topGraphs) {
      arrangedAll = GraphUtils.arrangeBySourceGraph(topGraph1.getGraph(), latestWorkbenchGraph);
    }

    if (!arrangedAll) {
      arrangedAll = GraphUtils.arrangeBySourceGraph(resultGraph, sourceGraph);
    }

    if (!arrangedAll) {
      for (ScoredGraph topGraph : topGraphs) {
        GraphUtils.circleLayout(topGraph.getGraph(), 200, 200, 150);
        GraphUtils.circleLayout(resultGraph, 200, 200, 150);
      }
    }

    return topGraphs;
  }
 /**
  * Return the longest suffix of bases shared among all provided vertices
  *
  * <p>For example, if the vertices have sequences AC, CC, and ATC, this would return a single C.
  * However, for ACC and TCC this would return CC. And for AC and TG this would return null;
  *
  * @param middleVertices a non-empty set of vertices
  * @return a single vertex that contains the common suffix of all middle vertices
  */
 @Requires("!middleVertices.isEmpty()")
 protected static SeqVertex commonSuffix(final Collection<SeqVertex> middleVertices) {
   final List<byte[]> kmers = GraphUtils.getKmers(middleVertices);
   final int min = GraphUtils.minKmerLength(kmers);
   final int suffixLen = GraphUtils.compSuffixLen(kmers, min);
   final byte[] kmer = kmers.get(0);
   final byte[] suffix = Arrays.copyOfRange(kmer, kmer.length - suffixLen, kmer.length);
   return new SeqVertex(suffix);
 }
Beispiel #4
0
 protected void doDefaultArrangement(Graph resultGraph) {
   if (getLatestWorkbenchGraph() != null) { // (alreadyLaidOut) {
     GraphUtils.arrangeBySourceGraph(resultGraph, getLatestWorkbenchGraph());
   } else if (getKnowledge().isDefaultToKnowledgeLayout()) {
     SearchGraphUtils.arrangeByKnowledgeTiers(resultGraph, getKnowledge());
     //            alreadyLaidOut = true;
   } else {
     GraphUtils.circleLayout(resultGraph, 200, 200, 150);
     //            alreadyLaidOut = true;
   }
 }
  @Test
  public void test7() {
    RandomUtil.getInstance().setSeed(29999483L);

    List<Node> nodes = new ArrayList<>();
    int numVars = 10;

    for (int i = 0; i < numVars; i++) nodes.add(new ContinuousVariable("X" + (i + 1)));

    Graph graph =
        GraphUtils.randomGraphRandomForwardEdges(nodes, 0, numVars, 30, 15, 15, false, true);

    GeneralizedSemPm pm = new GeneralizedSemPm(graph);
    GeneralizedSemIm im = new GeneralizedSemIm(pm);

    print(im);

    DataSet data = im.simulateDataRecursive(1000, false);

    GeneralizedSemEstimator estimator = new GeneralizedSemEstimator();
    GeneralizedSemIm estIm = estimator.estimate(pm, data);

    print(estIm);
    print(estimator.getReport());

    double aSquaredStar = estimator.getaSquaredStar();

    assertEquals(0.67, aSquaredStar, 0.01);
  }
Beispiel #6
0
  private void calculateArrowsForward(Node x, Node y, Graph graph) {
    clearArrow(x, y);

    if (!knowledgeEmpty()) {
      if (getKnowledge().isForbidden(x.getName(), y.getName())) {
        return;
      }
    }

    List<Node> naYX = getNaYX(x, y, graph);
    List<Node> t = getTNeighbors(x, y, graph);

    DepthChoiceGenerator gen = new DepthChoiceGenerator(t.size(), t.size());
    int[] choice;

    while ((choice = gen.next()) != null) {
      List<Node> s = GraphUtils.asList(choice, t);

      if (!knowledgeEmpty()) {
        if (!validSetByKnowledge(y, s)) {
          continue;
        }
      }

      double bump = insertEval(x, y, s, naYX, graph);

      if (bump > 0.0) {
        Arrow arrow = new Arrow(bump, x, y, s, naYX);
        sortedArrows.add(arrow);
        addLookupArrow(x, y, arrow);
      }
    }
  }
  @Test(dataProvider = "PrefixSuffixData")
  public void testPrefixSuffix(
      final List<String> strings, int expectedPrefixLen, int expectedSuffixLen) {
    final List<byte[]> bytes = new ArrayList<>();
    int min = Integer.MAX_VALUE;
    for (final String s : strings) {
      bytes.add(s.getBytes());
      min = Math.min(min, s.length());
    }

    final int actualPrefixLen = GraphUtils.compPrefixLen(bytes, min);
    Assert.assertEquals(actualPrefixLen, expectedPrefixLen, "Failed prefix test");

    final int actualSuffixLen = GraphUtils.compSuffixLen(bytes, min - actualPrefixLen);
    Assert.assertEquals(actualSuffixLen, expectedSuffixLen, "Failed suffix test");
  }
Beispiel #8
0
  public Graph orient() {
    Graph skeleton = GraphUtils.undirectedGraph(getPattern());
    Graph graph = new EdgeListGraph(skeleton.getNodes());

    List<Node> nodes = skeleton.getNodes();
    //        Collections.shuffle(nodes);

    if (isR1Done()) {
      ruleR1(skeleton, graph, nodes);
    }

    for (Edge edge : skeleton.getEdges()) {
      if (!graph.isAdjacentTo(edge.getNode1(), edge.getNode2())) {
        graph.addUndirectedEdge(edge.getNode1(), edge.getNode2());
      }
    }

    if (isR2Done()) {
      ruleR2(skeleton, graph);
    }

    if (isMeekDone()) {
      new MeekRules().orientImplied(graph);
    }

    return graph;
  }
  /**
   * Transforms a maximally directed pattern (PDAG) represented in graph <code>g</code> into an
   * arbitrary DAG by modifying <code>g</code> itself. Based on the algorithm described in
   * Chickering (2002) "Optimal structure identification with greedy search" Journal of Machine
   * Learning Research. R. Silva, June 2004
   */
  public static void pdagToDag(Graph g) {
    Graph p = new EdgeListGraph(g);
    List<Edge> undirectedEdges = new ArrayList<Edge>();

    for (Edge edge : g.getEdges()) {
      if (edge.getEndpoint1() == Endpoint.TAIL
          && edge.getEndpoint2() == Endpoint.TAIL
          && !undirectedEdges.contains(edge)) {
        undirectedEdges.add(edge);
      }
    }
    g.removeEdges(undirectedEdges);
    List<Node> pNodes = p.getNodes();

    do {
      Node x = null;

      for (Node pNode : pNodes) {
        x = pNode;

        if (p.getChildren(x).size() > 0) {
          continue;
        }

        Set<Node> neighbors = new HashSet<Node>();

        for (Edge edge : p.getEdges()) {
          if (edge.getNode1() == x || edge.getNode2() == x) {
            if (edge.getEndpoint1() == Endpoint.TAIL && edge.getEndpoint2() == Endpoint.TAIL) {
              if (edge.getNode1() == x) {
                neighbors.add(edge.getNode2());
              } else {
                neighbors.add(edge.getNode1());
              }
            }
          }
        }
        if (neighbors.size() > 0) {
          Collection<Node> parents = p.getParents(x);
          Set<Node> all = new HashSet<Node>(neighbors);
          all.addAll(parents);
          if (!GraphUtils.isClique(all, p)) {
            continue;
          }
        }

        for (Node neighbor : neighbors) {
          Node node1 = g.getNode(neighbor.getName());
          Node node2 = g.getNode(x.getName());

          g.addDirectedEdge(node1, node2);
        }
        p.removeNode(x);
        break;
      }
      pNodes.remove(x);
    } while (pNodes.size() > 0);
  }
Beispiel #10
0
  // Cannot be done if the graph changes.
  public void setInitialGraph(Graph initialGraph) {
    initialGraph = GraphUtils.replaceNodes(initialGraph, variables);

    out.println("Initial graph variables: " + initialGraph.getNodes());
    out.println("Data set variables: " + variables);

    if (!new HashSet<Node>(initialGraph.getNodes()).equals(new HashSet<Node>(variables))) {
      throw new IllegalArgumentException("Variables aren't the same.");
    }

    this.initialGraph = initialGraph;
  }
  public static Graph bestGuessCycleOrientation(Graph graph, IndependenceTest test) {
    while (true) {
      List<Node> cycle = GraphUtils.directedCycle(graph);

      if (cycle == null) {
        break;
      }

      LinkedList<Node> _cycle = new LinkedList<Node>(cycle);

      Node first = _cycle.getFirst();
      Node last = _cycle.getLast();

      _cycle.addFirst(last);
      _cycle.addLast(first);

      int _j = -1;
      double minP = Double.POSITIVE_INFINITY;

      for (int j = 1; j < _cycle.size() - 1; j++) {
        int i = j - 1;
        int k = j + 1;

        Node x = test.getVariable(_cycle.get(i).getName());
        Node y = test.getVariable(_cycle.get(j).getName());
        Node z = test.getVariable(_cycle.get(k).getName());

        test.isIndependent(x, z, Collections.singletonList(y));

        System.out.println("Testing " + x + " _||_ " + z + " | " + y);

        double p = test.getPValue();

        System.out.println("p = " + p);

        if (p < minP) {
          _j = j;
          minP = p;
        }
      }

      Node x = _cycle.get(_j - 1);
      Node y = _cycle.get(_j);
      Node z = _cycle.get(_j + 1);

      graph.removeEdge(x, y);
      graph.removeEdge(z, y);
      graph.addDirectedEdge(x, y);
      graph.addDirectedEdge(z, y);
    }

    return graph;
  }
Beispiel #12
0
  private void ruleR1(Graph skeleton, Graph graph, List<Node> nodes) {
    for (Node node : nodes) {
      SortedMap<Double, String> scoreReports = new TreeMap<Double, String>();

      List<Node> adj = skeleton.getAdjacentNodes(node);

      DepthChoiceGenerator gen = new DepthChoiceGenerator(adj.size(), adj.size());
      int[] choice;
      double maxScore = Double.NEGATIVE_INFINITY;
      List<Node> parents = null;

      while ((choice = gen.next()) != null) {
        List<Node> _parents = GraphUtils.asList(choice, adj);

        double score = score(node, _parents);
        scoreReports.put(-score, _parents.toString());

        if (score > maxScore) {
          maxScore = score;
          parents = _parents;
        }
      }

      for (double score : scoreReports.keySet()) {
        TetradLogger.getInstance()
            .log(
                "score",
                "For " + node + " parents = " + scoreReports.get(score) + " score = " + -score);
      }

      TetradLogger.getInstance().log("score", "");

      if (parents == null) {
        continue;
      }

      if (normal(node, parents)) continue;

      for (Node _node : adj) {
        if (parents.contains(_node)) {
          Edge parentEdge = Edges.directedEdge(_node, node);

          if (!graph.containsEdge(parentEdge)) {
            graph.addEdge(parentEdge);
          }
        }
      }
    }
  }
Beispiel #13
0
  /////////////////////////////////////////////////////////////////////////////
  // set the sepSet of x and y to the minimal such subset of the given sepSet
  // and remove the edge <x, y> if background knowledge allows
  /////////////////////////////////////////////////////////////////////////////
  private void setMinSepSet(List<Node> sepSet, Node x, Node y) {
    // It is assumed that BK has been considered before calling this method
    // (for example, setting independent1 and independent2 in ruleR0_RFCI)
    /*
          // background knowledge requires this edge
    if (knowledge.noEdgeRequired(x.getNode(), y.getNode()))
    {
    	return;
    }
     */

    List<Node> empty = Collections.emptyList();
    boolean indep;

    try {
      indep = independenceTest.isIndependent(x, y, empty);
    } catch (Exception e) {
      indep = false;
    }

    if (indep) {
      getSepsets().set(x, y, empty);
      return;
    }

    int sepSetSize = sepSet.size();
    for (int i = 1; i <= sepSetSize; i++) {
      ChoiceGenerator cg = new ChoiceGenerator(sepSetSize, i);
      int[] combination;

      while ((combination = cg.next()) != null) {
        List<Node> condSet = GraphUtils.asList(combination, sepSet);

        try {
          indep = independenceTest.isIndependent(x, y, condSet);
        } catch (Exception e) {
          indep = false;
        }

        if (indep) {
          getSepsets().set(x, y, condSet);
          return;
        }
      }
    }
  }
  public static List<Dag> getAllDagsInUndirectedGraph(Graph graph) {
    Graph undirected = GraphUtils.undirectedGraph(graph);

    DagIterator iterator = new DagIterator(undirected);
    List<Dag> dags = new ArrayList<Dag>();

    while (iterator.hasNext()) {
      Graph _graph = iterator.next();

      try {
        Dag dag = new Dag(_graph);
        dags.add(dag);
      } catch (IllegalArgumentException e) {
        //
      }
    }

    return dags;
  }
Beispiel #15
0
  /** Tests to see if d separation facts are symmetric. */
  public void testDSeparation2() {
    EdgeListGraphSingleConnections graph =
        new EdgeListGraphSingleConnections(
            new Dag(GraphUtils.randomGraph(7, 0, 14, 30, 15, 15, true)));

    List<Node> nodes = graph.getNodes();

    int depth = -1;

    for (int i = 0; i < nodes.size(); i++) {
      for (int j = i; j < nodes.size(); j++) {
        Node x = nodes.get(i);
        Node y = nodes.get(j);

        List<Node> theRest = new ArrayList<Node>(nodes);
        //                theRest.remove(x);
        //                theRest.remove(y);

        DepthChoiceGenerator gen = new DepthChoiceGenerator(theRest.size(), depth);
        int[] choice;

        while ((choice = gen.next()) != null) {
          List<Node> z = new LinkedList<Node>();

          for (int k = 0; k < choice.length; k++) {
            z.add(theRest.get(choice[k]));
          }

          boolean dConnectedTo = graph.isDConnectedTo(x, y, z);
          boolean dConnectedTo1 = graph.isDConnectedTo(y, x, z);

          if (dConnectedTo != dConnectedTo1) {
            System.out.println(x + " d connected to " + y + " given " + z);
            System.out.println(graph);
            System.out.println("dconnectedto = " + dConnectedTo);
            System.out.println("dconnecteto1 = " + dConnectedTo1);
            fail();
          }
        }
      }
    }
  }
Beispiel #16
0
  // Invalid if then nodes or graph changes.
  private void calculateArrowsBackward(Node x, Node y, Graph graph) {
    if (x == y) {
      return;
    }

    if (!graph.isAdjacentTo(x, y)) {
      return;
    }

    if (!knowledgeEmpty()) {
      if (!getKnowledge().noEdgeRequired(x.getName(), y.getName())) {
        return;
      }
    }

    List<Node> naYX = getNaYX(x, y, graph);

    clearArrow(x, y);

    List<Node> _naYX = new ArrayList<Node>(naYX);
    DepthChoiceGenerator gen = new DepthChoiceGenerator(_naYX.size(), _naYX.size());
    int[] choice;

    while ((choice = gen.next()) != null) {
      List<Node> H = GraphUtils.asList(choice, _naYX);

      if (!knowledgeEmpty()) {
        if (!validSetByKnowledge(y, H)) {
          continue;
        }
      }

      double bump = deleteEval(x, y, H, naYX, graph);

      if (bump > 0.0) {
        Arrow arrow = new Arrow(bump, x, y, H, naYX);
        sortedArrows.add(arrow);
        addLookupArrow(x, y, arrow);
      }
    }
  }
Beispiel #17
0
  /** Tests to see if d separation facts are symmetric. */
  public void testDSeparation() {
    EdgeListGraphSingleConnections graph =
        new EdgeListGraphSingleConnections(
            new Dag(GraphUtils.randomGraph(7, 0, 7, 30, 15, 15, true)));
    System.out.println(graph);

    List<Node> nodes = graph.getNodes();

    int depth = -1;

    for (int i = 0; i < nodes.size(); i++) {
      for (int j = i + 1; j < nodes.size(); j++) {
        Node x = nodes.get(i);
        Node y = nodes.get(j);

        List<Node> theRest = new ArrayList<Node>(nodes);
        theRest.remove(x);
        theRest.remove(y);

        DepthChoiceGenerator gen = new DepthChoiceGenerator(theRest.size(), depth);
        int[] choice;

        while ((choice = gen.next()) != null) {
          List<Node> z = new LinkedList<Node>();

          for (int k = 0; k < choice.length; k++) {
            z.add(theRest.get(choice[k]));
          }

          if (graph.isDSeparatedFrom(x, y, z) != graph.isDSeparatedFrom(y, x, z)) {
            fail(
                SearchLogUtils.independenceFact(x, y, z)
                    + " should have same d-sep result as "
                    + SearchLogUtils.independenceFact(y, x, z));
          }
        }
      }
    }
  }
Beispiel #18
0
  public Graph search(List<Node> nodes) {
    long startTime = System.currentTimeMillis();
    localScoreCache.clear();

    if (!dataSet().getVariables().containsAll(nodes)) {
      throw new IllegalArgumentException("All of the nodes must be in " + "the supplied data set.");
    }

    Graph graph;

    if (initialGraph == null) {
      graph = new EdgeListGraphSingleConnections(nodes);
    } else {
      initialGraph = GraphUtils.replaceNodes(initialGraph, variables);
      graph = new EdgeListGraphSingleConnections(initialGraph);
    }

    topGraphs.clear();

    buildIndexing(graph);
    addRequiredEdges(graph);
    score = 0.0;

    // Do forward search.
    fes(graph, nodes);

    // Do backward search.
    bes(graph);

    long endTime = System.currentTimeMillis();
    this.elapsedTime = endTime - startTime;
    this.logger.log("graph", "\nReturning this graph: " + graph);

    this.logger.log("info", "Elapsed time = " + (elapsedTime) / 1000. + " s");
    this.logger.flush();

    return graph;
  }
Beispiel #19
0
  public void rtestDSeparation4() {
    Graph graph = new Dag(GraphUtils.randomGraph(100, 20, 100, 5, 5, 5, false));

    long start, stop;
    int depth = -1;

    IndependenceTest test = new IndTestDSep(graph);

    Rfci fci = new Rfci(test);
    Fas fas = new Fas(test);
    start = System.currentTimeMillis();
    fci.setDepth(depth);
    fci.setVerbose(true);
    fci.search(fas, fas.getNodes());
    stop = System.currentTimeMillis();

    System.out.println("DSEP RFCI");
    System.out.println("# dsep checks = " + fas.getNumIndependenceTests());
    System.out.println("Elapsed " + (stop - start));
    System.out.println("Per " + fas.getNumIndependenceTests() / (double) (stop - start));

    SemPm pm = new SemPm(graph);
    SemIm im = new SemIm(pm);
    DataSet data = im.simulateData(1000, false);
    IndependenceTest test2 = new IndTestFisherZ(data, 0.001);

    Rfci fci3 = new Rfci(test2);
    Fas fas2 = new Fas(test2);
    start = System.currentTimeMillis();
    fci3.setDepth(depth);
    fci3.search(fas2, fas2.getNodes());
    stop = System.currentTimeMillis();

    System.out.println("FISHER Z RFCI");
    System.out.println("# indep checks = " + fas.getNumIndependenceTests());
    System.out.println("Elapsed " + (stop - start));
    System.out.println("Per " + fas.getNumIndependenceTests() / (double) (stop - start));
  }
  @Test
  public void test6() {
    RandomUtil.getInstance().setSeed(29999483L);

    int numVars = 5;

    List<Node> nodes = new ArrayList<>();
    for (int i = 0; i < numVars; i++) nodes.add(new ContinuousVariable("X" + (i + 1)));

    Graph graph =
        GraphUtils.randomGraphRandomForwardEdges(nodes, 0, numVars, 30, 15, 15, false, true);

    SemPm spm = new SemPm(graph);

    SemImInitializationParams params = new SemImInitializationParams();
    params.setCoefRange(0.5, 1.5);
    params.setVarRange(1, 3);

    SemIm sim = new SemIm(spm, params);

    GeneralizedSemPm pm = new GeneralizedSemPm(spm);
    GeneralizedSemIm im = new GeneralizedSemIm(pm, sim);

    DataSet data = im.simulateData(1000, false);

    print(im);

    GeneralizedSemEstimator estimator = new GeneralizedSemEstimator();
    GeneralizedSemIm estIm = estimator.estimate(pm, data);

    print(estIm);
    print(estimator.getReport());

    double aSquaredStar = estimator.getaSquaredStar();

    assertEquals(0.59, aSquaredStar, 0.01);
  }
  @Test
  public void test5() {
    RandomUtil.getInstance().setSeed(29999483L);

    List<Node> nodes = new ArrayList<>();

    for (int i1 = 0; i1 < 5; i1++) {
      nodes.add(new ContinuousVariable("X" + (i1 + 1)));
    }

    Graph graph = new Dag(GraphUtils.randomGraph(nodes, 0, 5, 30, 15, 15, false));
    SemPm semPm = new SemPm(graph);
    SemIm semIm = new SemIm(semPm);

    semIm.simulateDataReducedForm(1000, false);

    GeneralizedSemPm pm = new GeneralizedSemPm(semPm);
    GeneralizedSemIm im = new GeneralizedSemIm(pm, semIm);

    TetradVector e = new TetradVector(5);

    for (int i = 0; i < e.size(); i++) {
      e.set(i, RandomUtil.getInstance().nextNormal(0, 1));
    }

    TetradVector record1 = semIm.simulateOneRecord(e);
    TetradVector record2 = im.simulateOneRecord(e);

    print("XXX1" + e);
    print("XXX2" + record1);
    print("XXX3" + record2);

    for (int i = 0; i < record1.size(); i++) {
      assertEquals(record1.get(i), record2.get(i), 1e-10);
    }
  }
Beispiel #22
0
  public void rtest4() {
    System.out.println("SHD\tP");
    //        System.out.println("MB1\tMB2\tMB3\tMB4\tMB5\tMB6");

    Graph mim = DataGraphUtils.randomSingleFactorModel(5, 5, 8, 0, 0, 0);

    Graph mimStructure = structure(mim);

    SemPm pm = new SemPm(mim);
    SemImInitializationParams params = new SemImInitializationParams();
    params.setCoefRange(0.5, 1.5);

    NumberFormat nf = new DecimalFormat("0.0000");

    int totalError = 0;
    int errorCount = 0;

    int maxScore = 0;
    int maxNumMeasures = 0;
    double maxP = 0.0;

    for (int r = 0; r < 1; r++) {
      SemIm im = new SemIm(pm, params);

      DataSet data = im.simulateData(1000, false);

      mim = GraphUtils.replaceNodes(mim, data.getVariables());
      List<List<Node>> trueClusters = MimUtils.convertToClusters2(mim);

      CovarianceMatrix _cov = new CovarianceMatrix(data);

      ICovarianceMatrix cov = DataUtils.reorderColumns(_cov);

      String algorithm = "FOFC";
      Graph searchGraph;
      List<List<Node>> partition;

      if (algorithm.equals("FOFC")) {
        FindOneFactorClusters fofc =
            new FindOneFactorClusters(cov, TestType.TETRAD_WISHART, 0.001f);
        searchGraph = fofc.search();
        searchGraph = GraphUtils.replaceNodes(searchGraph, data.getVariables());
        partition = MimUtils.convertToClusters2(searchGraph);
      } else if (algorithm.equals("BPC")) {
        TestType testType = TestType.TETRAD_WISHART;
        TestType purifyType = TestType.TETRAD_BASED2;

        BuildPureClusters bpc = new BuildPureClusters(data, 0.001, testType, purifyType);
        searchGraph = bpc.search();

        partition = MimUtils.convertToClusters2(searchGraph);
      } else {
        throw new IllegalStateException();
      }

      mimStructure = GraphUtils.replaceNodes(mimStructure, data.getVariables());

      List<String> latentVarList = reidentifyVariables(mim, data, partition, 2);

      Graph mimbuildStructure;

      Mimbuild2 mimbuild = new Mimbuild2();
      mimbuild.setAlpha(0.001);
      mimbuild.setMinClusterSize(3);

      try {
        mimbuildStructure = mimbuild.search(partition, latentVarList, cov);
      } catch (Exception e) {
        e.printStackTrace();
        continue;
      }

      mimbuildStructure = GraphUtils.replaceNodes(mimbuildStructure, data.getVariables());
      mimbuildStructure = condense(mimStructure, mimbuildStructure);

      //            Graph mimSubgraph = new EdgeListGraph(mimStructure);
      //
      //            for (Node node : mimSubgraph.getNodes()) {
      //                if (!mimStructure.getNodes().contains(node)) {
      //                    mimSubgraph.removeNode(node);
      //                }
      //            }

      int shd = SearchGraphUtils.structuralHammingDistance(mimStructure, mimbuildStructure);
      boolean impureCluster = containsImpureCluster(partition, trueClusters);
      double pValue = mimbuild.getpValue();
      boolean pBelow05 = pValue < 0.05;
      boolean numClustersGreaterThan5 = partition.size() != 5;
      boolean error = false;

      //            boolean condition = impureCluster || numClustersGreaterThan5 || pBelow05;
      //            boolean condition = numClustersGreaterThan5 || pBelow05;
      boolean condition = numClustered(partition) == 40;

      if (!condition && (shd > 5)) {
        error = true;
      }

      if (!condition) {
        totalError += shd;
        errorCount++;
      }

      //            if (numClustered(partition) > maxNumMeasures) {
      //                maxNumMeasures = numClustered(partition);
      //                maxP = pValue;
      //                maxScore = shd;
      //                System.out.println("maxNumMeasures = " + maxNumMeasures);
      //                System.out.println("maxScore = " + maxScore);
      //                System.out.println("maxP = " + maxP);
      //                System.out.println("clusters = " + clusterSizes(partition, trueClusters));
      //            }
      //            else
      if (pValue > maxP) {
        maxScore = shd;
        maxP = mimbuild.getpValue();
        maxNumMeasures = numClustered(partition);
        System.out.println("maxNumMeasures = " + maxNumMeasures);
        System.out.println("maxScore = " + maxScore);
        System.out.println("maxP = " + maxP);
        System.out.println("clusters = " + clusterSizes(partition, trueClusters));
      }

      System.out.print(
          shd
              + "\t"
              + nf.format(pValue)
              + " "
              //                            + (error ? 1 : 0) + " "
              //                            + (pBelow05 ? "P < 0.05 " : "")
              //                            + (impureCluster ? "Impure cluster " : "")
              //                            + (numClustersGreaterThan5 ? "# Clusters != 5 " : "")
              //                            + clusterSizes(partition, trueClusters)
              + numClustered(partition));

      System.out.println();
    }

    System.out.println("\nAvg SHD for not-flagged cases = " + (totalError / (double) errorCount));

    System.out.println("maxNumMeasures = " + maxNumMeasures);
    System.out.println("maxScore = " + maxScore);
    System.out.println("maxP = " + maxP);
  }
Beispiel #23
0
  /**
   * Calculates the error variance for the given error node, given all of the coefficient values in
   * the model.
   *
   * @param error An error term in the model--i.e. a variable with NodeType.ERROR.
   * @return The value of the error variance, or Double.NaN is the value is undefined.
   */
  private double calculateErrorVarianceFromParams(Node error) {
    error = semGraph.getNode(error.getName());

    Node child = semGraph.getChildren(error).get(0);
    List<Node> parents = semGraph.getParents(child);

    double otherVariance = 0;

    for (Node parent : parents) {
      if (parent == error) continue;
      double coef = getEdgeCoefficient(parent, child);
      otherVariance += coef * coef;
    }

    if (parents.size() >= 2) {
      ChoiceGenerator gen = new ChoiceGenerator(parents.size(), 2);
      int[] indices;

      while ((indices = gen.next()) != null) {
        Node node1 = parents.get(indices[0]);
        Node node2 = parents.get(indices[1]);

        double coef1, coef2;

        if (node1.getNodeType() != NodeType.ERROR) {
          coef1 = getEdgeCoefficient(node1, child);
        } else {
          coef1 = 1;
        }

        if (node2.getNodeType() != NodeType.ERROR) {
          coef2 = getEdgeCoefficient(node2, child);
        } else {
          coef2 = 1;
        }

        List<List<Node>> treks = GraphUtils.treksIncludingBidirected(semGraph, node1, node2);

        double cov = 0.0;

        for (List<Node> trek : treks) {
          double product = 1.0;

          for (int i = 1; i < trek.size(); i++) {
            Node _node1 = trek.get(i - 1);
            Node _node2 = trek.get(i);

            Edge edge = semGraph.getEdge(_node1, _node2);
            double factor;

            if (Edges.isBidirectedEdge(edge)) {
              factor = edgeParameters.get(edge);
            } else if (!edgeParameters.containsKey(edge)) {
              factor = 1;
            } else if (semGraph.isParentOf(_node1, _node2)) {
              factor = getEdgeCoefficient(_node1, _node2);
            } else {
              factor = getEdgeCoefficient(_node2, _node1);
            }

            product *= factor;
          }

          cov += product;
        }

        otherVariance += 2 * coef1 * coef2 * cov;
      }
    }

    return 1.0 - otherVariance <= 0 ? Double.NaN : 1.0 - otherVariance;
  }
  public static CpcTripleType getCpcTripleType(
      Node x, Node y, Node z, IndependenceTest test, int depth, Graph graph) {
    //    	System.out.println("getCpcTripleType 1");

    boolean existsSepsetContainingY = false;
    boolean existsSepsetNotContainingY = false;

    Set<Node> __nodes = new HashSet<Node>(graph.getAdjacentNodes(x));
    __nodes.remove(z);

    //    	System.out.println("getCpcTripleType 2");

    List<Node> _nodes = new LinkedList<Node>(__nodes);
    TetradLogger.getInstance()
        .log("adjacencies", "Adjacents for " + x + "--" + y + "--" + z + " = " + _nodes);

    //        System.out.println("getCpcTripleType 3");

    int _depth = depth;
    if (_depth == -1) {
      _depth = 1000;
    }
    _depth = Math.min(_depth, _nodes.size());

    //    	System.out.println("getCpcTripleType 4");

    for (int d = 0; d <= _depth; d++) {
      //        	System.out.println("getCpcTripleType 5");

      ChoiceGenerator cg = new ChoiceGenerator(_nodes.size(), d);
      int[] choice;

      while ((choice = cg.next()) != null) {
        //            	System.out.println("getCpcTripleType 6");

        List<Node> condSet = GraphUtils.asList(choice, _nodes);

        //            	System.out.println("getCpcTripleType 7");

        if (test.isIndependent(x, z, condSet)) {
          if (condSet.contains(y)) {
            existsSepsetContainingY = true;
          } else {
            existsSepsetNotContainingY = true;
          }
        }
      }
    }

    //    	System.out.println("getCpcTripleType 8");

    __nodes = new HashSet<Node>(graph.getAdjacentNodes(z));
    __nodes.remove(x);

    _nodes = new LinkedList<Node>(__nodes);
    TetradLogger.getInstance()
        .log("adjacencies", "Adjacents for " + x + "--" + y + "--" + z + " = " + _nodes);

    //    	System.out.println("getCpcTripleType 9");

    _depth = depth;
    if (_depth == -1) {
      _depth = 1000;
    }
    _depth = Math.min(_depth, _nodes.size());

    //    	System.out.println("getCpcTripleType 10");

    for (int d = 0; d <= _depth; d++) {
      //        	System.out.println("getCpcTripleType 11");

      ChoiceGenerator cg = new ChoiceGenerator(_nodes.size(), d);
      int[] choice;

      while ((choice = cg.next()) != null) {
        List<Node> condSet = GraphUtils.asList(choice, _nodes);

        if (test.isIndependent(x, z, condSet)) {
          if (condSet.contains(y)) {
            existsSepsetContainingY = true;
          } else {
            existsSepsetNotContainingY = true;
          }
        }
      }
    }

    //    	System.out.println("getCpcTripleType 12");

    if (existsSepsetContainingY == existsSepsetNotContainingY) {
      return CpcTripleType.AMBIGUOUS;
    } else if (!existsSepsetNotContainingY) {
      return CpcTripleType.NONCOLLIDER;
    } else {
      return CpcTripleType.COLLIDER;
    }
  }
Beispiel #25
0
  private void resolveOneEdgeMax(Graph graph, Node x, Node y, boolean strong, Graph oldGraph) {
    if (RandomUtil.getInstance().nextDouble() > 0.5) {
      Node temp = x;
      x = y;
      y = temp;
    }

    TetradLogger.getInstance().log("info", "\nEDGE " + x + " --- " + y);

    SortedMap<Double, String> scoreReports = new TreeMap<Double, String>();

    List<Node> neighborsx = graph.getAdjacentNodes(x);
    neighborsx.remove(y);

    double max = Double.NEGATIVE_INFINITY;
    boolean left = false;
    boolean right = false;

    DepthChoiceGenerator genx = new DepthChoiceGenerator(neighborsx.size(), neighborsx.size());
    int[] choicex;

    while ((choicex = genx.next()) != null) {
      List<Node> condxMinus = GraphUtils.asList(choicex, neighborsx);

      List<Node> condxPlus = new ArrayList<Node>(condxMinus);
      condxPlus.add(y);

      double xPlus = score(x, condxPlus);
      double xMinus = score(x, condxMinus);

      List<Node> neighborsy = graph.getAdjacentNodes(y);
      neighborsy.remove(x);

      DepthChoiceGenerator geny = new DepthChoiceGenerator(neighborsy.size(), neighborsy.size());
      int[] choicey;

      while ((choicey = geny.next()) != null) {
        List<Node> condyMinus = GraphUtils.asList(choicey, neighborsy);

        //                List<Node> parentsY = oldGraph.getParents(y);
        //                parentsY.remove(x);
        //                if (!condyMinus.containsAll(parentsY)) {
        //                    continue;
        //                }

        List<Node> condyPlus = new ArrayList<Node>(condyMinus);
        condyPlus.add(x);

        double yPlus = score(y, condyPlus);
        double yMinus = score(y, condyMinus);

        // Checking them all at once is expensive but avoids lexical ordering problems in the
        // algorithm.
        if (normal(y, condyPlus)
            || normal(x, condxMinus)
            || normal(x, condxPlus)
            || normal(y, condyMinus)) {
          continue;
        }

        double delta = 0.0;

        if (strong) {
          if (yPlus <= xPlus + delta && xMinus <= yMinus + delta) {
            double score = combinedScore(xPlus, yMinus);

            if (yPlus <= yMinus + delta && xMinus <= xPlus + delta) {
              StringBuilder builder = new StringBuilder();

              builder.append("\nStrong " + y + "->" + x + " " + score);
              builder.append("\n   Parents(" + x + ") = " + condxMinus);
              builder.append("\n   Parents(" + y + ") = " + condyMinus);

              scoreReports.put(-score, builder.toString());

              if (score > max) {
                max = score;
                left = true;
                right = false;
              }
            } else {
              StringBuilder builder = new StringBuilder();

              builder.append("\nNo directed edge " + x + "--" + y + " " + score);
              builder.append("\n   Parents(" + x + ") = " + condxMinus);
              builder.append("\n   Parents(" + y + ") = " + condyMinus);

              scoreReports.put(-score, builder.toString());
            }
          } else if (xPlus <= yPlus + delta && yMinus <= xMinus + delta) {
            double score = combinedScore(yPlus, xMinus);

            if (yMinus <= yPlus + delta && xPlus <= xMinus + delta) {
              StringBuilder builder = new StringBuilder();

              builder.append("\nStrong " + x + "->" + y + " " + score);
              builder.append("\n   Parents(" + x + ") = " + condxMinus);
              builder.append("\n   Parents(" + y + ") = " + condyMinus);

              scoreReports.put(-score, builder.toString());

              if (score > max) {
                max = score;
                left = false;
                right = true;
              }
            } else {
              StringBuilder builder = new StringBuilder();

              builder.append("\nNo directed edge " + x + "--" + y + " " + score);
              builder.append("\n   Parents(" + x + ") = " + condxMinus);
              builder.append("\n   Parents(" + y + ") = " + condyMinus);

              scoreReports.put(-score, builder.toString());
            }
          } else if (yPlus <= xPlus + delta && yMinus <= xMinus + delta) {
            double score = combinedScore(yPlus, xMinus);

            StringBuilder builder = new StringBuilder();

            builder.append("\nNo directed edge " + x + "--" + y + " " + score);
            builder.append("\n   Parents(" + x + ") = " + condxMinus);
            builder.append("\n   Parents(" + y + ") = " + condyMinus);

            scoreReports.put(-score, builder.toString());
          } else if (xPlus <= yPlus + delta && xMinus <= yMinus + delta) {
            double score = combinedScore(yPlus, xMinus);

            StringBuilder builder = new StringBuilder();

            builder.append("\nNo directed edge " + x + "--" + y + " " + score);
            builder.append("\n   Parents(" + x + ") = " + condxMinus);
            builder.append("\n   Parents(" + y + ") = " + condyMinus);

            scoreReports.put(-score, builder.toString());
          }
        } else {
          if (yPlus <= xPlus + delta && xMinus <= yMinus + delta) {
            double score = combinedScore(xPlus, yMinus);

            StringBuilder builder = new StringBuilder();

            builder.append("\nWeak " + y + "->" + x + " " + score);
            builder.append("\n   Parents(" + x + ") = " + condxMinus);
            builder.append("\n   Parents(" + y + ") = " + condyMinus);

            scoreReports.put(-score, builder.toString());

            if (score > max) {
              max = score;
              left = true;
              right = false;
            }
          } else if (xPlus <= yPlus + delta && yMinus <= xMinus + delta) {
            double score = combinedScore(yPlus, xMinus);

            StringBuilder builder = new StringBuilder();

            builder.append("\nWeak " + x + "->" + y + " " + score);
            builder.append("\n   Parents(" + x + ") = " + condxMinus);
            builder.append("\n   Parents(" + y + ") = " + condyMinus);

            scoreReports.put(-score, builder.toString());

            if (score > max) {
              max = score;
              left = false;
              right = true;
            }
          } else if (yPlus <= xPlus + delta && yMinus <= xMinus + delta) {
            double score = combinedScore(yPlus, xMinus);

            StringBuilder builder = new StringBuilder();

            builder.append("\nNo directed edge " + x + "--" + y + " " + score);
            builder.append("\n   Parents(" + x + ") = " + condxMinus);
            builder.append("\n   Parents(" + y + ") = " + condyMinus);

            scoreReports.put(-score, builder.toString());
          } else if (xPlus <= yPlus + delta && xMinus <= yMinus + delta) {
            double score = combinedScore(yPlus, xMinus);

            StringBuilder builder = new StringBuilder();

            builder.append("\nNo directed edge " + x + "--" + y + " " + score);
            builder.append("\n   Parents(" + x + ") = " + condxMinus);
            builder.append("\n   Parents(" + y + ") = " + condyMinus);

            scoreReports.put(-score, builder.toString());
          }
        }
      }
    }

    for (double score : scoreReports.keySet()) {
      TetradLogger.getInstance().log("info", scoreReports.get(score));
    }

    graph.removeEdges(x, y);

    if (left) {
      graph.addDirectedEdge(y, x);
    }

    if (right) {
      graph.addDirectedEdge(x, y);
    }

    if (!graph.isAdjacentTo(x, y)) {
      graph.addUndirectedEdge(x, y);
    }
  }