// type 'java Parallel' to run this application public static void main(String args[]) throws VisADException, RemoteException, IOException { RealType index = RealType.getRealType("index"); RealType[] coords = new RealType[NCOORDS]; for (int i = 0; i < NCOORDS; i++) { coords[i] = RealType.getRealType("coord" + i); } RealTupleType range = new RealTupleType(coords); FunctionType ftype = new FunctionType(index, range); Integer1DSet index_set = new Integer1DSet(NROWS); float[][] samples = new float[NCOORDS][NROWS]; for (int i = 0; i < NCOORDS; i++) { for (int j = 0; j < NROWS; j++) { samples[i][j] = (float) Math.random(); } } FlatField data = new FlatField(ftype, index_set); data.setSamples(samples, false); // create a 2-D Display using Java3D DisplayImpl display = new DisplayImplJ3D("display", new TwoDDisplayRendererJ3D()); parallel(display, data); // create JFrame (i.e., a window) for display and slider JFrame frame = new JFrame("Parallel Coordinates VisAD Application"); frame.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } }); // create JPanel in JFrame JPanel panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS)); panel.setAlignmentY(JPanel.TOP_ALIGNMENT); panel.setAlignmentX(JPanel.LEFT_ALIGNMENT); frame.getContentPane().add(panel); // add display to JPanel panel.add(display.getComponent()); // set size of JFrame and make it visible frame.setSize(500, 500); frame.setVisible(true); }
/** * set up the types * * @throws VisADException On badness */ private void setupTypes() throws VisADException { if (curve_type == null) { RealTupleType latlon = RealTupleType.LatitudeLongitudeTuple; curve_type = new SetType(latlon); // (front_index -> // ((Latitude, Longitude) -> (front_red, front_green, front_blue))) count++; front_index = RealType.getRealType("front_index" + count); front_red = RealType.getRealType("front_red" + count); front_green = RealType.getRealType("front_green" + count); front_blue = RealType.getRealType("front_blue" + count); RealTupleType rgb = new RealTupleType(front_red, front_green, front_blue); front_inner = new FunctionType(latlon, rgb); front_type = new FunctionType(front_index, front_inner); fronts_type = new FunctionType(RealType.Time, front_type); } }
/** create parallel coordinates display for data */ public static void parallel(DisplayImpl display, FlatField data) throws VisADException, RemoteException { FunctionType ftype = (FunctionType) data.getType(); RealType index = (RealType) ftype.getDomain().getComponent(0); RealTupleType range = (RealTupleType) ftype.getRange(); int ncoords = range.getDimension(); int nrows = data.getLength(); Set index_set = data.getDomainSet(); float[][] samples = data.getFloats(false); RealType x = RealType.getRealType("coordinate"); RealType y = RealType.getRealType("value"); SetType xy = new SetType(new RealTupleType(x, y)); FunctionType ptype = new FunctionType(index, xy); FieldImpl pfield = new FieldImpl(ptype, index_set); for (int j = 0; j < nrows; j++) { float[][] locs = new float[2][ncoords]; for (int i = 0; i < ncoords; i++) { locs[0][i] = i; locs[1][i] = samples[i][j]; } Gridded2DSet set = new Gridded2DSet(xy, locs, ncoords); pfield.setSample(j, set, false); } // create a DataReference for river system DataReference parallel_ref = new DataReferenceImpl("parallel"); parallel_ref.setData(pfield); display.addMap(new ScalarMap(x, Display.XAxis)); display.addMap(new ScalarMap(y, Display.YAxis)); // enable axis scales display.getGraphicsModeControl().setScaleEnable(true); // link display to parallel display display.addReference(parallel_ref); }
public synchronized void drag_direct(VisADRay ray, boolean first, int mouseModifiers) { if (barbValues == null || ref == null || shadow == null) return; if (first) { stop = false; } else { if (stop) return; } // modify direction if mshift != 0 // modify speed if mctrl != 0 // modify speed and direction if neither int mshift = mouseModifiers & InputEvent.SHIFT_MASK; int mctrl = mouseModifiers & InputEvent.CTRL_MASK; float o_x = (float) ray.position[0]; float o_y = (float) ray.position[1]; float o_z = (float) ray.position[2]; float d_x = (float) ray.vector[0]; float d_y = (float) ray.vector[1]; float d_z = (float) ray.vector[2]; if (pickCrawlToCursor) { if (first) { offset_count = OFFSET_COUNT_INIT; } else { if (offset_count > 0) offset_count--; } if (offset_count > 0) { float mult = ((float) offset_count) / ((float) OFFSET_COUNT_INIT); o_x += mult * offsetx; o_y += mult * offsety; o_z += mult * offsetz; } } if (first || refirst) { point_x = barbValues[2]; point_y = barbValues[3]; point_z = 0.0f; line_x = 0.0f; line_y = 0.0f; line_z = 1.0f; // lineAxis == 2 in DataRenderer.drag_direct } // end if (first || refirst) float[] x = new float[3]; // x marks the spot // DirectManifoldDimension = 2 // intersect ray with plane float dot = (point_x - o_x) * line_x + (point_y - o_y) * line_y + (point_z - o_z) * line_z; float dot2 = d_x * line_x + d_y * line_y + d_z * line_z; if (dot2 == 0.0) return; dot = dot / dot2; // x is intersection x[0] = o_x + dot * d_x; x[1] = o_y + dot * d_y; x[2] = o_z + dot * d_z; /* System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ try { Tuple data = (Tuple) link.getData(); int n = ((TupleType) data.getType()).getNumberOfRealComponents(); Real[] reals = new Real[n]; int k = 0; int m = data.getDimension(); for (int i = 0; i < m; i++) { Data component = data.getComponent(i); if (component instanceof Real) { reals[k++] = (Real) component; } else if (component instanceof RealTuple) { for (int j = 0; j < ((RealTuple) component).getDimension(); j++) { reals[k++] = (Real) ((RealTuple) component).getComponent(j); } } } if (first || refirst) { // get first Data flow vector for (int i = 0; i < 3; i++) { int j = flowToComponent[i]; data_flow[i] = (j >= 0) ? (float) reals[j].getValue() : 0.0f; } if (coord != null) { float[][] ds = {{data_flow[0]}, {data_flow[1]}, {data_flow[2]}}; ds = coord.toReference(ds); data_flow[0] = ds[0][0]; data_flow[1] = ds[1][0]; data_flow[2] = ds[2][0]; } data_speed = (float) Math.sqrt( data_flow[0] * data_flow[0] + data_flow[1] * data_flow[1] + data_flow[2] * data_flow[2]); float barb0 = barbValues[2] - barbValues[0]; float barb1 = barbValues[3] - barbValues[1]; /* System.out.println("data_flow = " + data_flow[0] + " " + data_flow[1] + " " + data_flow[2]); System.out.println("barbValues = " + barbValues[0] + " " + barbValues[1] + " " + barbValues[2] + " " + barbValues[3]); System.out.println("data_speed = " + data_speed); */ } // end if (first || refirst) // convert x to a flow vector, and from spatial to earth if (getRealVectorTypes(which_barb) instanceof EarthVectorType) { // don't worry about vector magnitude - // data_speed & display_speed take care of that float eps = 0.0001f; // estimate derivative with a little vector float[][] spatial_locs = { {barbValues[0], barbValues[0] + eps * (x[0] - barbValues[0])}, {barbValues[1], barbValues[1] + eps * (x[1] - barbValues[1])}, {0.0f, 0.0f} }; /* System.out.println("spatial_locs = " + spatial_locs[0][0] + " " + spatial_locs[0][1] + " " + spatial_locs[1][0] + " " + spatial_locs[1][1]); */ float[][] earth_locs = spatialToEarth(spatial_locs); // WLH - 18 Aug 99 if (earth_locs == null) return; /* System.out.println("earth_locs = " + earth_locs[0][0] + " " + earth_locs[0][1] + " " + earth_locs[1][0] + " " + earth_locs[1][1]); */ x[2] = 0.0f; x[0] = (earth_locs[1][1] - earth_locs[1][0]) * ((float) Math.cos(Data.DEGREES_TO_RADIANS * earth_locs[0][0])); x[1] = earth_locs[0][1] - earth_locs[0][0]; /* System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else { // if (!(getRealVectorTypes(which_barb) instanceof EarthVectorType)) // convert x to vector x[0] -= barbValues[0]; x[1] -= barbValues[1]; // adjust for spatial map scalings but don't worry about vector // magnitude - data_speed & display_speed take care of that // also, spatial is Cartesian double[] ranges = getRanges(); for (int i = 0; i < 3; i++) { x[i] /= ranges[i]; } /* System.out.println("ranges = " + ranges[0] + " " + ranges[1] + " " + ranges[2]); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } // WLH 6 August 99 x[0] = -x[0]; x[1] = -x[1]; x[2] = -x[2]; /* may need to do this for performance float[] xx = {x[0], x[1], x[2]}; addPoint(xx); */ float x_speed = (float) Math.sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]); /* WLH 16 April 2002 - from Ken if (x_speed < 0.000001f) x_speed = 0.000001f; */ if (x_speed < 0.01f) x_speed = 0.01f; if (first || refirst) { display_speed = x_speed; } refirst = false; if (mshift != 0) { // only modify data_flow direction float ratio = data_speed / x_speed; x[0] *= ratio; x[1] *= ratio; x[2] *= ratio; /* System.out.println("direction, ratio = " + ratio + " " + data_speed + " " + x_speed); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else if (mctrl != 0) { // only modify data_flow speed float ratio = x_speed / display_speed; if (data_speed < EPS) { data_flow[0] = 2.0f * EPS; refirst = true; } x[0] = ratio * data_flow[0]; x[1] = ratio * data_flow[1]; x[2] = ratio * data_flow[2]; /* System.out.println("speed, ratio = " + ratio + " " + x_speed + " " + display_speed); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else { // modify data_flow speed and direction float ratio = data_speed / display_speed; /* System.out.println("data_speed = " + data_speed + " display_speed = " + display_speed + " ratio = " + ratio + " EPS = " + EPS); System.out.println("x = " + x[0] + " " + x[1] +" " + x[2] + " x_speed = " + x_speed); data_speed = 21.213203 display_speed = 0.01 ratio = 2121.3203 EPS = 0.2 x = 1.6170928E-4 1.6021729E-4 -0.0 x_speed = 0.01 wind = (0.3430372, 0.33987218) at (-35.0, 5.0) */ if (data_speed < EPS) { data_flow[0] = 2.0f * EPS; x[0] = data_flow[0]; x[1] = data_flow[1]; x[2] = data_flow[2]; refirst = true; } else { x[0] *= ratio; x[1] *= ratio; x[2] *= ratio; } } if (coord != null) { float[][] xs = {{x[0]}, {x[1]}, {x[2]}}; xs = coord.fromReference(xs); x[0] = xs[0][0]; x[1] = xs[1][0]; x[2] = xs[2][0]; } // now replace flow values Vector vect = new Vector(); for (int i = 0; i < 3; i++) { int j = flowToComponent[i]; if (j >= 0) { RealType rtype = (RealType) reals[j].getType(); reals[j] = new Real(rtype, (double) x[i], rtype.getDefaultUnit(), null); // WLH 31 Aug 2000 Real r = reals[j]; Unit overrideUnit = null; if (directMap[i] != null) { overrideUnit = directMap[i].getOverrideUnit(); } Unit rtunit = rtype.getDefaultUnit(); // units not part of Time string if (overrideUnit != null && !overrideUnit.equals(rtunit) && !RealType.Time.equals(rtype)) { double d = (float) overrideUnit.toThis((double) x[0], rtunit); r = new Real(rtype, d, overrideUnit); String valueString = r.toValueString(); vect.addElement(rtype.getName() + " = " + valueString); } else { // create location string vect.addElement(rtype.getName() + " = " + x[i]); } } } getDisplayRenderer().setCursorStringVector(vect); Data newData = null; // now build new RealTuple or Flat Tuple if (data instanceof RealTuple) { newData = new RealTuple( ((RealTupleType) data.getType()), reals, ((RealTuple) data).getCoordinateSystem()); } else { Data[] new_components = new Data[m]; k = 0; for (int i = 0; i < m; i++) { Data component = data.getComponent(i); if (component instanceof Real) { new_components[i] = reals[k++]; } else if (component instanceof RealTuple) { Real[] sub_reals = new Real[((RealTuple) component).getDimension()]; for (int j = 0; j < ((RealTuple) component).getDimension(); j++) { sub_reals[j] = reals[k++]; } new_components[i] = new RealTuple( ((RealTupleType) component.getType()), sub_reals, ((RealTuple) component).getCoordinateSystem()); } } newData = new Tuple(new_components, false); } ref.setData(newData); } catch (VisADException e) { // do nothing System.out.println("drag_direct " + e); e.printStackTrace(); } catch (RemoteException e) { // do nothing System.out.println("drag_direct " + e); e.printStackTrace(); } }
/** test BarbManipulationRendererJ3D */ public static void main(String args[]) throws VisADException, RemoteException { System.out.println("BMR.main()"); // construct RealTypes for wind record components RealType lat = RealType.Latitude; RealType lon = RealType.Longitude; RealType windx = RealType.getRealType("windx", CommonUnit.meterPerSecond); RealType windy = RealType.getRealType("windy", CommonUnit.meterPerSecond); RealType red = RealType.getRealType("red"); RealType green = RealType.getRealType("green"); // EarthVectorType extends RealTupleType and says that its // components are vectors in m/s with components parallel // to Longitude (positive east) and Latitude (positive north) EarthVectorType windxy = new EarthVectorType(windx, windy); RealType wind_dir = RealType.getRealType("wind_dir", CommonUnit.degree); RealType wind_speed = RealType.getRealType("wind_speed", CommonUnit.meterPerSecond); RealTupleType windds = null; if (args.length > 0) { System.out.println("polar winds"); windds = new RealTupleType( new RealType[] {wind_dir, wind_speed}, new WindPolarCoordinateSystem(windxy), null); } // construct Java3D display and mappings that govern // how wind records are displayed DisplayImpl display = new DisplayImplJ3D("display1", new TwoDDisplayRendererJ3D()); ScalarMap lonmap = new ScalarMap(lon, Display.XAxis); display.addMap(lonmap); ScalarMap latmap = new ScalarMap(lat, Display.YAxis); display.addMap(latmap); FlowControl flow_control; if (args.length > 0) { ScalarMap winds_map = new ScalarMap(wind_speed, Display.Flow1Radial); display.addMap(winds_map); winds_map.setRange(0.0, 1.0); // do this for barb rendering ScalarMap windd_map = new ScalarMap(wind_dir, Display.Flow1Azimuth); display.addMap(windd_map); windd_map.setRange(0.0, 360.0); // do this for barb rendering flow_control = (FlowControl) windd_map.getControl(); flow_control.setFlowScale(0.15f); // this controls size of barbs } else { ScalarMap windx_map = new ScalarMap(windx, Display.Flow1X); display.addMap(windx_map); windx_map.setRange(-1.0, 1.0); // do this for barb rendering ScalarMap windy_map = new ScalarMap(windy, Display.Flow1Y); display.addMap(windy_map); windy_map.setRange(-1.0, 1.0); // do this for barb rendering flow_control = (FlowControl) windy_map.getControl(); flow_control.setFlowScale(0.15f); // this controls size of barbs } display.addMap(new ScalarMap(red, Display.Red)); display.addMap(new ScalarMap(green, Display.Green)); display.addMap(new ConstantMap(1.0, Display.Blue)); DataReferenceImpl[] refs = new DataReferenceImpl[N * N]; int k = 0; // create an array of N by N winds for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { double u = 2.0 * i / (N - 1.0) - 1.0; double v = 2.0 * j / (N - 1.0) - 1.0; // each wind record is a Tuple (lon, lat, (windx, windy), red, green) // set colors by wind components, just for grins Tuple tuple; double fx = 30.0 * u; double fy = 30.0 * v; if (args.length > 0) { double fd = Data.RADIANS_TO_DEGREES * Math.atan2(-fx, -fy); double fs = Math.sqrt(fx * fx + fy * fy); tuple = new Tuple( new Data[] { new Real(lon, 10.0 * u), new Real(lat, 10.0 * v - 40.0), new RealTuple(windds, new double[] {fd, fs}), new Real(red, u), new Real(green, v) }); } else { tuple = new Tuple( new Data[] { new Real(lon, 10.0 * u), new Real(lat, 10.0 * v - 40.0), new RealTuple(windxy, new double[] {fx, fy}), new Real(red, u), new Real(green, v) }); } // construct reference for wind record refs[k] = new DataReferenceImpl("ref_" + k); refs[k].setData(tuple); // link wind record to display via BarbManipulationRendererJ3D // so user can change barb by dragging it // drag with right mouse button and shift to change direction // drag with right mouse button and no shift to change speed BarbManipulationRendererJ3D renderer = new BarbManipulationRendererJ3D(); renderer.setKnotsConvert(true); display.addReferences(renderer, refs[k]); // link wind record to a CellImpl that will listen for changes // and print them WindGetterJ3D cell = new WindGetterJ3D(flow_control, refs[k]); cell.addReference(refs[k]); k++; } } // instead of linking the wind record "DataReferenceImpl refs" to // the WindGetterJ3Ds, you can have some user interface event (e.g., // the user clicks on "DONE") trigger code that does a getData() on // all the refs and stores the records in a file. // create JFrame (i.e., a window) for display and slider JFrame frame = new JFrame("test BarbManipulationRendererJ3D"); frame.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } }); // create JPanel in JFrame JPanel panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS)); panel.setAlignmentY(JPanel.TOP_ALIGNMENT); panel.setAlignmentX(JPanel.LEFT_ALIGNMENT); frame.getContentPane().add(panel); // add display to JPanel panel.add(display.getComponent()); // set size of JFrame and make it visible frame.setSize(500, 500); frame.setVisible(true); }
/** * run 'java FlowTest middle_latitude' to test with (lat, lon) run 'java FlowTest middle_latitude * x' to test with (lon, lat) adjust middle_latitude for south or north */ public static void main(String args[]) throws VisADException, RemoteException { double mid_lat = -10.0; if (args.length > 0) { try { mid_lat = Double.valueOf(args[0]).doubleValue(); } catch (NumberFormatException e) { } } boolean swap = (args.length > 1); RealType lat = RealType.Latitude; RealType lon = RealType.Longitude; RealType[] types; if (swap) { types = new RealType[] {lon, lat}; } else { types = new RealType[] {lat, lon}; } RealTupleType earth_location = new RealTupleType(types); System.out.println("earth_location = " + earth_location + " mid_lat = " + mid_lat); RealType flowx = RealType.getRealType("flowx", CommonUnit.meterPerSecond); RealType flowy = RealType.getRealType("flowy", CommonUnit.meterPerSecond); RealType red = RealType.getRealType("red"); RealType green = RealType.getRealType("green"); EarthVectorType flowxy = new EarthVectorType(flowx, flowy); TupleType range = null; range = new TupleType(new MathType[] {flowxy, red, green}); FunctionType flow_field = new FunctionType(earth_location, range); DisplayImpl display = new DisplayImplJ3D("display1", new TwoDDisplayRendererJ3D()); ScalarMap xmap = new ScalarMap(lon, Display.XAxis); display.addMap(xmap); ScalarMap ymap = new ScalarMap(lat, Display.YAxis); display.addMap(ymap); ScalarMap flowx_map = new ScalarMap(flowx, Display.Flow1X); display.addMap(flowx_map); flowx_map.setRange(-10.0, 10.0); ScalarMap flowy_map = new ScalarMap(flowy, Display.Flow1Y); display.addMap(flowy_map); flowy_map.setRange(-10.0, 10.0); FlowControl flow_control = (FlowControl) flowy_map.getControl(); flow_control.setFlowScale(0.05f); display.addMap(new ScalarMap(red, Display.Red)); display.addMap(new ScalarMap(green, Display.Green)); display.addMap(new ConstantMap(1.0, Display.Blue)); double lonlow = -10.0; double lonhi = 10.0; double latlow = mid_lat - 10.0; double lathi = mid_lat + 10.0; Linear2DSet set; if (swap) { set = new Linear2DSet(earth_location, lonlow, lonhi, N, latlow, lathi, N); } else { set = new Linear2DSet(earth_location, latlow, lathi, N, lonlow, lonhi, N); } double[][] values = new double[4][N * N]; int m = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { int k = i; int l = j; if (swap) { k = j; l = i; } double u = (N - 1.0) / 2.0 - l; double v = k - (N - 1.0) / 2.0; // double u = 2.0 * k / (N - 1.0) - 1.0; // double v = 2.0 * l / (N - 1.0); double fx = 6.0 * u; double fy = 6.0 * v; values[0][m] = fx; values[1][m] = fy; values[2][m] = u; values[3][m] = v; m++; } } FlatField field = new FlatField(flow_field, set); field.setSamples(values); DataReferenceImpl ref = new DataReferenceImpl("ref"); ref.setData(field); display.addReference(ref); // create JFrame (i.e., a window) for display and slider JFrame frame = new JFrame("test FlowTest"); frame.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } }); // create JPanel in JFrame JPanel panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS)); panel.setAlignmentY(JPanel.TOP_ALIGNMENT); panel.setAlignmentX(JPanel.LEFT_ALIGNMENT); frame.getContentPane().add(panel); // add display to JPanel panel.add(display.getComponent()); // set size of JFrame and make it visible frame.setSize(500, 500); frame.setVisible(true); }