/**
   * From the Lucky13 paper: An individual record R (viewed as a byte sequence of length at least
   * zero) is processed as follows. The sender maintains an 8-byte sequence number SQN which is
   * incremented for each record sent, and forms a 5-byte field HDR consisting of a 1-byte type
   * field, a 2-byte version field, and a 2-byte length field. It then calculates a MAC over the
   * bytes SQN || HDR || R.
   *
   * @param protocolVersion
   * @param contentType
   * @param data
   * @return
   */
  public byte[] calculateMac(
      ProtocolVersion protocolVersion, ProtocolMessageType contentType, byte[] data) {

    byte[] SQN = ArrayConverter.longToUint64Bytes(sequenceNumber);
    byte[] HDR =
        ArrayConverter.concatenate(
            contentType.getArrayValue(),
            protocolVersion.getValue(),
            ArrayConverter.intToBytes(data.length, 2));

    writeMac.update(SQN);
    writeMac.update(HDR);
    writeMac.update(data);

    LOGGER.debug(
        "The MAC was caluculated over the following data: {}",
        ArrayConverter.bytesToHexString(ArrayConverter.concatenate(SQN, HDR, data)));

    byte[] result = writeMac.doFinal();

    LOGGER.debug("MAC result: {}", ArrayConverter.bytesToHexString(result));

    // we increment sequence number for the sent records
    sequenceNumber++;

    return result;
  }
  public byte[] calculateDtlsMac(
      ProtocolVersion protocolVersion,
      ProtocolMessageType contentType,
      byte[] data,
      long dtlsSequenceNumber,
      int epochNumber) {

    byte[] SQN =
        ArrayConverter.concatenate(
            ArrayConverter.intToBytes(epochNumber, 2),
            ArrayConverter.longToUint48Bytes(dtlsSequenceNumber));
    byte[] HDR =
        ArrayConverter.concatenate(
            contentType.getArrayValue(),
            protocolVersion.getValue(),
            ArrayConverter.intToBytes(data.length, 2));

    writeMac.update(SQN);
    writeMac.update(HDR);
    writeMac.update(data);

    if (LOGGER.isDebugEnabled()) {
      LOGGER.debug(
          "The MAC will be caluculated over the following data: {}",
          ArrayConverter.bytesToHexString(
              ArrayConverter.concatenate(
                  ArrayConverter.intToBytes(epochNumber, 2),
                  ArrayConverter.longToUint48Bytes(sequenceNumber),
                  HDR,
                  data)));
    }

    byte[] result = writeMac.doFinal();

    if (LOGGER.isDebugEnabled()) {
      LOGGER.debug("MAC result: {}", ArrayConverter.bytesToHexString(result));
    }

    return result;
  }
  public TlsRecordBlockCipher(TlsContext tlsContext)
      throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
          InvalidAlgorithmParameterException {
    this.tlsContext = tlsContext;
    ProtocolVersion protocolVersion = tlsContext.getProtocolVersion();
    CipherSuite cipherSuite = tlsContext.getSelectedCipherSuite();
    if (protocolVersion == ProtocolVersion.TLS11
        || protocolVersion == ProtocolVersion.TLS12
        || protocolVersion == ProtocolVersion.DTLS10
        || protocolVersion == ProtocolVersion.DTLS12) {
      useExplicitIv = true;
    }
    bulkCipherAlg = BulkCipherAlgorithm.getBulkCipherAlgorithm(cipherSuite);
    CipherAlgorithm cipherAlg = AlgorithmResolver.getCipher(cipherSuite);
    int keySize = cipherAlg.getKeySize();
    encryptCipher = Cipher.getInstance(cipherAlg.getJavaName());
    decryptCipher = Cipher.getInstance(cipherAlg.getJavaName());

    MacAlgorithm macAlg = AlgorithmResolver.getMacAlgorithm(cipherSuite);
    readMac = Mac.getInstance(macAlg.getJavaName());
    writeMac = Mac.getInstance(macAlg.getJavaName());

    int secretSetSize = (2 * keySize) + readMac.getMacLength() + writeMac.getMacLength();

    if (!useExplicitIv) {
      secretSetSize += encryptCipher.getBlockSize() + decryptCipher.getBlockSize();
    }

    byte[] masterSecret = tlsContext.getMasterSecret();
    byte[] seed = tlsContext.getServerClientRandom();

    PRFAlgorithm prfAlgorithm =
        AlgorithmResolver.getPRFAlgorithm(
            tlsContext.getProtocolVersion(), tlsContext.getSelectedCipherSuite());
    byte[] keyBlock =
        PseudoRandomFunction.compute(
            prfAlgorithm,
            masterSecret,
            PseudoRandomFunction.KEY_EXPANSION_LABEL,
            seed,
            secretSetSize);

    LOGGER.debug("A new key block was generated: {}", ArrayConverter.bytesToHexString(keyBlock));

    int offset = 0;
    byte[] clientMacWriteSecret =
        Arrays.copyOfRange(keyBlock, offset, offset + readMac.getMacLength());
    offset += readMac.getMacLength();
    LOGGER.debug(
        "Client MAC write Secret: {}", ArrayConverter.bytesToHexString(clientMacWriteSecret));

    byte[] serverMacWriteSecret =
        Arrays.copyOfRange(keyBlock, offset, offset + writeMac.getMacLength());
    offset += writeMac.getMacLength();
    LOGGER.debug(
        "Server MAC write Secret:  {}", ArrayConverter.bytesToHexString(serverMacWriteSecret));

    clientWriteKey = Arrays.copyOfRange(keyBlock, offset, offset + keySize);
    offset += keySize;
    LOGGER.debug("Client write key: {}", ArrayConverter.bytesToHexString(clientWriteKey));

    serverWriteKey = Arrays.copyOfRange(keyBlock, offset, offset + keySize);
    offset += keySize;
    LOGGER.debug("Server write key: {}", ArrayConverter.bytesToHexString(serverWriteKey));

    byte[] clientWriteIv, serverWriteIv;
    if (useExplicitIv) {
      clientWriteIv = new byte[encryptCipher.getBlockSize()];
      RandomHelper.getRandom().nextBytes(clientWriteIv);
      serverWriteIv = new byte[decryptCipher.getBlockSize()];
      RandomHelper.getRandom().nextBytes(serverWriteIv);
    } else {
      clientWriteIv = Arrays.copyOfRange(keyBlock, offset, offset + encryptCipher.getBlockSize());
      offset += encryptCipher.getBlockSize();
      LOGGER.debug("Client write IV: {}", ArrayConverter.bytesToHexString(clientWriteIv));
      serverWriteIv = Arrays.copyOfRange(keyBlock, offset, offset + decryptCipher.getBlockSize());
      offset += decryptCipher.getBlockSize();
      LOGGER.debug("Server write IV: {}", ArrayConverter.bytesToHexString(serverWriteIv));
    }

    if (tlsContext.getMyConnectionEnd() == ConnectionEnd.CLIENT) {
      encryptIv = new IvParameterSpec(clientWriteIv);
      decryptIv = new IvParameterSpec(serverWriteIv);
      encryptKey = new SecretKeySpec(clientWriteKey, bulkCipherAlg.getJavaName());
      decryptKey = new SecretKeySpec(serverWriteKey, bulkCipherAlg.getJavaName());
      encryptCipher.init(Cipher.ENCRYPT_MODE, encryptKey, encryptIv);
      decryptCipher.init(Cipher.DECRYPT_MODE, decryptKey, decryptIv);
      readMac.init(new SecretKeySpec(serverMacWriteSecret, macAlg.getJavaName()));
      writeMac.init(new SecretKeySpec(clientMacWriteSecret, macAlg.getJavaName()));
    } else {
      decryptIv = new IvParameterSpec(clientWriteIv);
      encryptIv = new IvParameterSpec(serverWriteIv);
      // todo check if this correct???
      encryptCipher.init(
          Cipher.ENCRYPT_MODE,
          new SecretKeySpec(serverWriteKey, bulkCipherAlg.getJavaName()),
          encryptIv);
      decryptCipher.init(
          Cipher.DECRYPT_MODE,
          new SecretKeySpec(clientWriteKey, bulkCipherAlg.getJavaName()),
          decryptIv);
      readMac.init(new SecretKeySpec(clientMacWriteSecret, macAlg.getJavaName()));
      writeMac.init(new SecretKeySpec(serverMacWriteSecret, macAlg.getJavaName()));
    }

    if (offset != keyBlock.length) {
      throw new CryptoException("Offset exceeded the generated key block length");
    }

    // mac has to be put into one or more blocks, depending on the MAC/block
    // length
    // additionally, there is a need for one explicit IV block
    minimalEncryptedRecordLength =
        ((readMac.getMacLength() / decryptCipher.getBlockSize()) + 2)
            * decryptCipher.getBlockSize();
  }