/** Notifies the scheduler that a thread has been interrupted and is finishing its work. */
 private void notifyThreadLeaving() {
   profileCollectorHandle.notifyThreadRemoved();
   // NOTE: we're not yet trying to adapt the number of threads being
   // used, so we assume that threads are only lost when the system
   // wants to shutdown...in practice, this should look at some
   // threshold and see if another consumer needs to be created
   if (threadCount.decrementAndGet() == 0) {
     logger.log(Level.CONFIG, "No more threads are consuming tasks");
     shutdown();
   }
 }
  /**
   * Private method that executes a single task, creating the transaction state and handling re-try
   * as appropriate. If the thread calling this method is interrupted before the task can complete
   * then this method attempts to re-schedule the task to run in another thread if {@code
   * retryOnInterruption} is {@code true} and always re-throws the associated {@code
   * InterruptedException}. Providing {@code true} for the {@code unbounded} parameter results in a
   * transaction with timeout value as specified by the value of the {@code
   * TransactionCoordinator.TXN_UNBOUNDED_TIMEOUT_PROPERTY} property.
   *
   * <p>This method returns {@code true} if the task was completed or failed permanently, and {@code
   * false} otherwise. If {@code false} is returned then the task is scheduled to be re-tried at
   * some point in the future, possibly by another thread, by this method. The caller may query the
   * status of the task and wait for the task to complete or fail permanently through the {@code
   * ScheduledTaskImpl} interface.
   */
  private boolean executeTask(
      ScheduledTaskImpl task, boolean unbounded, boolean retryOnInterruption)
      throws InterruptedException {
    logger.log(Level.FINEST, "starting a new transactional task");

    // store the current owner, and then push the new thread detail
    Identity parent = ContextResolver.getCurrentOwner();
    ContextResolver.setTaskState(kernelContext, task.getOwner());

    try {
      // keep trying to run the task until we succeed, tracking how
      // many tries it actually took
      while (true) {
        if (!task.setRunning(true)) {
          // this task is already finished
          return true;
        }

        // NOTE: We could report the two queue sizes separately,
        // so we should figure out how we want to represent these
        int waitSize = backingQueue.getReadyCount() + dependencyCount.get();
        profileCollectorHandle.startTask(
            task.getTask(), task.getOwner(), task.getStartTime(), waitSize);
        task.incrementTryCount();

        Transaction transaction = null;

        try {
          // setup the transaction state
          TransactionHandle handle = transactionCoordinator.createTransaction(unbounded);
          transaction = handle.getTransaction();
          ContextResolver.setCurrentTransaction(transaction);

          try {
            // notify the profiler and access coordinator
            profileCollectorHandle.noteTransactional(transaction.getId());
            accessCoordinator.notifyNewTransaction(
                transaction, task.getStartTime(), task.getTryCount());

            // run the task in the new transactional context
            task.getTask().run();
          } finally {
            // regardless of the outcome, always clear the current
            // transaction state before proceeding...
            ContextResolver.clearCurrentTransaction(transaction);
          }

          // try to commit the transaction...note that there's the
          // chance that the application code masked the orginal
          // cause of a failure, so we'll check for that first,
          // re-throwing the root cause in that case
          if (transaction.isAborted()) {
            throw transaction.getAbortCause();
          }
          handle.commit();

          // the task completed successfully, so we're done
          profileCollectorHandle.finishTask(task.getTryCount());
          task.setDone(null);
          return true;
        } catch (InterruptedException ie) {
          // make sure the transaction was aborted
          if (!transaction.isAborted()) {
            transaction.abort(ie);
          }
          profileCollectorHandle.finishTask(task.getTryCount(), ie);
          // if the task didn't finish because of the interruption
          // then we want to note that and possibly re-queue the
          // task to run in a usable thread
          if (task.setInterrupted() && retryOnInterruption) {
            if (!handoffRetry(task, ie)) {
              // if the task couldn't be re-queued, then there's
              // nothing left to do but drop it
              task.setDone(ie);
              if (logger.isLoggable(Level.WARNING)) {
                logger.logThrow(Level.WARNING, ie, "dropping " + "an interrupted task: {0}" + task);
              }
            }
          }
          // always re-throw the interruption
          throw ie;
        } catch (Throwable t) {
          // make sure the transaction was aborted
          if ((transaction != null) && (!transaction.isAborted())) {
            transaction.abort(t);
          }
          profileCollectorHandle.finishTask(task.getTryCount(), t);
          // some error occurred, so see if we should re-try
          if (!shouldRetry(task, t)) {
            // the task is not being re-tried
            task.setDone(t);
            return true;
          } else {
            // see if the re-try should be handed-off
            task.setRunning(false);
            if (handoffRetry(task, t)) {
              return false;
            }
          }
        }
      }
    } finally {
      // always restore the previous owner before leaving...
      ContextResolver.setTaskState(kernelContext, parent);
    }
  }
 /**
  * Notifies the scheduler that a thread has been started to consume tasks as they become ready.
  */
 private void notifyThreadJoining() {
   profileCollectorHandle.notifyThreadAdded();
   threadCount.incrementAndGet();
 }