/**
   * Detects a Data Matrix Code in an image.
   *
   * @return {@link DetectorResult} encapsulating results of detecting a Data Matrix Code
   * @throws NotFoundException if no Data Matrix Code can be found
   */
  public DetectorResult detect() throws NotFoundException {

    ResultPoint[] cornerPoints = rectangleDetector.detect();
    ResultPoint pointA = cornerPoints[0];
    ResultPoint pointB = cornerPoints[1];
    ResultPoint pointC = cornerPoints[2];
    ResultPoint pointD = cornerPoints[3];

    // Point A and D are across the diagonal from one another,
    // as are B and C. Figure out which are the solid black lines
    // by counting transitions
    Vector transitions = new Vector(4);
    transitions.addElement(transitionsBetween(pointA, pointB));
    transitions.addElement(transitionsBetween(pointA, pointC));
    transitions.addElement(transitionsBetween(pointB, pointD));
    transitions.addElement(transitionsBetween(pointC, pointD));
    Collections.insertionSort(transitions, new ResultPointsAndTransitionsComparator());

    // Sort by number of transitions. First two will be the two solid sides; last two
    // will be the two alternating black/white sides
    ResultPointsAndTransitions lSideOne = (ResultPointsAndTransitions) transitions.elementAt(0);
    ResultPointsAndTransitions lSideTwo = (ResultPointsAndTransitions) transitions.elementAt(1);

    // Figure out which point is their intersection by tallying up the number of times we see the
    // endpoints in the four endpoints. One will show up twice.
    Hashtable pointCount = new Hashtable();
    increment(pointCount, lSideOne.getFrom());
    increment(pointCount, lSideOne.getTo());
    increment(pointCount, lSideTwo.getFrom());
    increment(pointCount, lSideTwo.getTo());

    ResultPoint maybeTopLeft = null;
    ResultPoint bottomLeft = null;
    ResultPoint maybeBottomRight = null;
    Enumeration points = pointCount.keys();
    while (points.hasMoreElements()) {
      ResultPoint point = (ResultPoint) points.nextElement();
      Integer value = (Integer) pointCount.get(point);
      if (value.intValue() == 2) {
        bottomLeft = point; // this is definitely the bottom left, then -- end of two L sides
      } else {
        // Otherwise it's either top left or bottom right -- just assign the two arbitrarily now
        if (maybeTopLeft == null) {
          maybeTopLeft = point;
        } else {
          maybeBottomRight = point;
        }
      }
    }

    if (maybeTopLeft == null || bottomLeft == null || maybeBottomRight == null) {
      throw NotFoundException.getNotFoundInstance();
    }

    // Bottom left is correct but top left and bottom right might be switched
    ResultPoint[] corners = {maybeTopLeft, bottomLeft, maybeBottomRight};
    // Use the dot product trick to sort them out
    ResultPoint.orderBestPatterns(corners);

    // Now we know which is which:
    ResultPoint bottomRight = corners[0];
    bottomLeft = corners[1];
    ResultPoint topLeft = corners[2];

    // Which point didn't we find in relation to the "L" sides? that's the top right corner
    ResultPoint topRight;
    if (!pointCount.containsKey(pointA)) {
      topRight = pointA;
    } else if (!pointCount.containsKey(pointB)) {
      topRight = pointB;
    } else if (!pointCount.containsKey(pointC)) {
      topRight = pointC;
    } else {
      topRight = pointD;
    }

    // Next determine the dimension by tracing along the top or right side and counting black/white
    // transitions. Since we start inside a black module, we should see a number of transitions
    // equal to 1 less than the code dimension. Well, actually 2 less, because we are going to
    // end on a black module:

    // The top right point is actually the corner of a module, which is one of the two black modules
    // adjacent to the white module at the top right. Tracing to that corner from either the top
    // left
    // or bottom right should work here.
    int dimension =
        Math.min(
            transitionsBetween(topLeft, topRight).getTransitions(),
            transitionsBetween(bottomRight, topRight).getTransitions());
    if ((dimension & 0x01) == 1) {
      // it can't be odd, so, round... up?
      dimension++;
    }
    dimension += 2;

    // correct top right point to match the white module
    ResultPoint correctedTopRight =
        correctTopRight(bottomLeft, bottomRight, topLeft, topRight, dimension);
    if (correctedTopRight == null) {
      correctedTopRight = topRight;
    }

    // We redetermine the dimension using the corrected top right point
    int dimension2 =
        Math.max(
            transitionsBetween(topLeft, correctedTopRight).getTransitions(),
            transitionsBetween(bottomRight, correctedTopRight).getTransitions());
    dimension2++;
    if ((dimension2 & 0x01) == 1) {
      dimension2++;
    }

    BitMatrix bits =
        sampleGrid(image, topLeft, bottomLeft, bottomRight, correctedTopRight, dimension2);

    return new DetectorResult(
        bits, new ResultPoint[] {topLeft, bottomLeft, bottomRight, correctedTopRight});
  }
  /**
   * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are those
   *     that have been detected at least {@link #CENTER_QUORUM} times, and whose module size
   *     differs from the average among those patterns the least
   * @throws NotFoundException if 3 such finder patterns do not exist
   */
  private FinderPattern[][] selectBestPatterns() throws NotFoundException {
    Vector possibleCenters = getPossibleCenters();
    int size = possibleCenters.size();

    if (size < 3) {
      // Couldn't find enough finder patterns
      throw NotFoundException.getNotFoundInstance();
    }

    /*
     * Begin HE modifications to safely detect multiple codes of equal size
     */
    if (size == 3) {
      return new FinderPattern[][] {
        new FinderPattern[] {
          (FinderPattern) possibleCenters.elementAt(0),
          (FinderPattern) possibleCenters.elementAt(1),
          (FinderPattern) possibleCenters.elementAt(2)
        }
      };
    }

    // Sort by estimated module size to speed up the upcoming checks
    Collections.insertionSort(possibleCenters, new ModuleSizeComparator());

    /*
     * Now lets start: build a list of tuples of three finder locations that
     *  - feature similar module sizes
     *  - are placed in a distance so the estimated module count is within the QR specification
     *  - have similar distance between upper left/right and left top/bottom finder patterns
     *  - form a triangle with 90° angle (checked by comparing top right/bottom left distance
     *    with pythagoras)
     *
     * Note: we allow each point to be used for more than one code region: this might seem
     * counterintuitive at first, but the performance penalty is not that big. At this point,
     * we cannot make a good quality decision whether the three finders actually represent
     * a QR code, or are just by chance layouted so it looks like there might be a QR code there.
     * So, if the layout seems right, lets have the decoder try to decode.
     */

    Vector results = new Vector(); // holder for the results

    for (int i1 = 0; i1 < (size - 2); i1++) {
      FinderPattern p1 = (FinderPattern) possibleCenters.elementAt(i1);
      if (p1 == null) {
        continue;
      }

      for (int i2 = i1 + 1; i2 < (size - 1); i2++) {
        FinderPattern p2 = (FinderPattern) possibleCenters.elementAt(i2);
        if (p2 == null) {
          continue;
        }

        // Compare the expected module sizes; if they are really off, skip
        float vModSize12 =
            (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize())
                / Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize());
        float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize());
        if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
          // break, since elements are ordered by the module size deviation there cannot be
          // any more interesting elements for the given p1.
          break;
        }

        for (int i3 = i2 + 1; i3 < size; i3++) {
          FinderPattern p3 = (FinderPattern) possibleCenters.elementAt(i3);
          if (p3 == null) {
            continue;
          }

          // Compare the expected module sizes; if they are really off, skip
          float vModSize23 =
              (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize())
                  / Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize());
          float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize());
          if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
            // break, since elements are ordered by the module size deviation there cannot be
            // any more interesting elements for the given p1.
            break;
          }

          FinderPattern[] test = {p1, p2, p3};
          ResultPoint.orderBestPatterns(test);

          // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal
          FinderPatternInfo info = new FinderPatternInfo(test);
          float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft());
          float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft());
          float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight());

          // Check the sizes
          float estimatedModuleCount = (dA + dB) / (p1.getEstimatedModuleSize() * 2.0f);
          if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE
              || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) {
            continue;
          }

          // Calculate the difference of the edge lengths in percent
          float vABBC = Math.abs((dA - dB) / Math.min(dA, dB));
          if (vABBC >= 0.1f) {
            continue;
          }

          // Calculate the diagonal length by assuming a 90° angle at topleft
          float dCpy = (float) Math.sqrt(dA * dA + dB * dB);
          // Compare to the real distance in %
          float vPyC = Math.abs((dC - dCpy) / Math.min(dC, dCpy));

          if (vPyC >= 0.1f) {
            continue;
          }

          // All tests passed!
          results.addElement(test);
        } // end iterate p3
      } // end iterate p2
    } // end iterate p1

    if (!results.isEmpty()) {
      FinderPattern[][] resultArray = new FinderPattern[results.size()][];
      for (int i = 0; i < results.size(); i++) {
        resultArray[i] = (FinderPattern[]) results.elementAt(i);
      }
      return resultArray;
    }

    // Nothing found!
    throw NotFoundException.getNotFoundInstance();
  }