private void setTransform( TransformType t, double[] normMul, double[] normSub, int vecStart, int n) { int idx = 0; // idx!=i when interactions are in play, otherwise, it's just 'i' for (int i = 0; i < n; ++i) { Vec v = _adaptedFrame.vec(vecStart + i); boolean isIWV = isInteractionVec(vecStart + i); switch (t) { case STANDARDIZE: normMul[idx] = (v.sigma() != 0) ? 1.0 / v.sigma() : 1.0; if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1; normSub[idx] = v.mean(); break; case NORMALIZE: normMul[idx] = (v.max() - v.min() > 0) ? 1.0 / (v.max() - v.min()) : 1.0; if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1; normSub[idx] = v.mean(); break; case DEMEAN: normMul[idx] = 1; if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1; normSub[idx] = v.mean(); break; case DESCALE: normMul[idx] = (v.sigma() != 0) ? 1.0 / v.sigma() : 1.0; if (isIWV) for (int j = idx + 1; j < nextNumericIdx(i) + idx; j++) normMul[j] = 1; normSub[idx] = 0; break; default: throw H2O.unimpl(); } assert !Double.isNaN(normMul[idx]); assert !Double.isNaN(normSub[idx]); idx = isIWV ? (idx + nextNumericIdx(i)) : (idx + 1); } }
@Test public void test() { Frame frame = null; try { Futures fs = new Futures(); Random random = new Random(); Vec[] vecs = new Vec[1]; AppendableVec vec = new AppendableVec(Vec.newKey(), Vec.T_NUM); for (int i = 0; i < 2; i++) { NewChunk chunk = new NewChunk(vec, i); for (int r = 0; r < 1000; r++) chunk.addNum(random.nextInt(1000)); chunk.close(i, fs); } vecs[0] = vec.layout_and_close(fs); fs.blockForPending(); frame = new Frame(Key.<Frame>make(), null, vecs); // Make sure we test the multi-chunk case vecs = frame.vecs(); assert vecs[0].nChunks() > 1; long rows = frame.numRows(); Vec v = vecs[0]; double min = Double.POSITIVE_INFINITY, max = Double.NEGATIVE_INFINITY, mean = 0, sigma = 0; for (int r = 0; r < rows; r++) { double d = v.at(r); if (d < min) min = d; if (d > max) max = d; mean += d; } mean /= rows; for (int r = 0; r < rows; r++) { double d = v.at(r); sigma += (d - mean) * (d - mean); } sigma = Math.sqrt(sigma / (rows - 1)); double epsilon = 1e-9; assertEquals(max, v.max(), epsilon); assertEquals(min, v.min(), epsilon); assertEquals(mean, v.mean(), epsilon); assertEquals(sigma, v.sigma(), epsilon); } finally { if (frame != null) frame.delete(); } }