@Test
 public void testAugmentPTA_Simple() // only two traces, both accept
     {
   Configuration config = mainConfiguration.copy();
   config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
   Set<List<Label>> plusStrings =
       buildSet(
           new String[][] {new String[] {"a", "b", "c"}, new String[] {"a", "d", "c"}},
           config,
           converter);
   DirectedSparseGraph actualA =
       Test_Orig_RPNIBlueFringeLearner.augmentPTA(
           DeterministicDirectedSparseGraph.initialise(), plusStrings, true);
   DeterministicDirectedSparseGraph.numberVertices(
       actualA); // Numbering is necessary to ensure uniqueness of labels used by LearnerGraph
   // constructor.
   config.setAllowedToCloneNonCmpVertex(true);
   LearnerGraph l = new LearnerGraph(config);
   LearnerGraph actualC = l.paths.augmentPTA(plusStrings, true, false);
   DeterministicDirectedSparseGraph.numberVertices(actualA);
   String expectedPTA = "A-a->B--b->C-c->Z1\nB--d->C2-c->Z2";
   checkM(expectedPTA, new LearnerGraph(actualA, config), config, converter);
   checkM(expectedPTA, actualC, config, converter);
 }
  /**
   * Builds a PTA from the supplied arguments using two different methods. If any of them throws,
   * checks that another one throws too and then rethrows the exception.
   *
   * @param arrayPlusStrings allowed sequences
   * @param arrayMinusStrings sequences ending at a reject state
   * @param expectedPTA a textual representation of a PTA which should be built.
   * @param expectMaxAutomataToBeTheSameAsPTA whether we expect augmentation of a maximal automaton
   *     to yield the same result as that of a normal PTA.
   */
  private void checkPTAconstruction(
      String[][] arrayPlusStrings,
      String[][] arrayMinusStrings,
      String expectedPTA,
      boolean expectMaxAutomataToBeTheSameAsPTA) {
    Configuration conf = mainConfiguration.copy();
    Set<List<Label>> plusStrings = buildSet(arrayPlusStrings, conf, converter),
        minusStrings = buildSet(arrayMinusStrings, conf, converter);
    LearnerGraph actualA = null, actualC = null, actualD = null, actualE = null, actualF = null;
    IllegalArgumentException eA = null, eC = null, eD = null, eE = null, eF = null;
    try {
      actualA =
          new LearnerGraph(
              Test_Orig_RPNIBlueFringeLearner.createAugmentedPTA(plusStrings, minusStrings), conf);
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eA = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      l.init(plusStrings, minusStrings);
      actualC = l.getTentativeAutomaton();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eC = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      PTASequenceEngine engine = buildPTA(plusStrings, minusStrings);
      checkPTAConsistency(engine, plusStrings, true);
      if (engine.numberOfLeafNodes() > 0) checkPTAConsistency(engine, minusStrings, false);
      l.init(engine, 0, 0);
      actualD = l.getTentativeAutomaton();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eD = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      l.init(buildPTA(plusStrings, buildSet(new String[][] {}, config, converter)), 0, 0);
      for (List<Label> seq : minusStrings) {
        Set<List<Label>> negativeSeq = new HashSet<List<Label>>();
        negativeSeq.add(seq);
        l.getTentativeAutomaton()
            .paths
            .augmentPTA(buildPTA(buildSet(new String[][] {}, config, converter), negativeSeq));
      }
      actualE = l.getTentativeAutomaton();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eE = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      l.getTentativeAutomaton().initPTA();
      l.getTentativeAutomaton().paths.augmentPTA(minusStrings, false, true);
      l.getTentativeAutomaton().paths.augmentPTA(plusStrings, true, true);
      actualF = l.getTentativeAutomaton();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eF = e;
    }

    if (eA != null) {
      Assert.assertNotNull(eC);
      Assert.assertNotNull(eD);
      Assert.assertNotNull(eE);
      if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNotNull(eF);
      throw eA;
    }

    Assert.assertNull(eA);
    Assert.assertNull(eC);
    Assert.assertNull(eD);
    Assert.assertNull(eE);
    if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNull(eF);

    Configuration config = mainConfiguration.copy();
    config.setAllowedToCloneNonCmpVertex(true);
    checkM(expectedPTA, actualA, config, converter);
    checkM(expectedPTA, actualC, config, converter);
    checkDepthLabelling(actualC);
    // Visualiser.updateFrame(actualE,FsmParser.buildGraph(expectedPTA,"expected
    // graph"));Visualiser.waitForKey();
    checkM(expectedPTA, actualD, config, converter);
    checkDepthLabelling(actualD);
    checkM(expectedPTA, actualE, config, converter);
    checkDepthLabelling(actualE);

    if (expectMaxAutomataToBeTheSameAsPTA) checkM(expectedPTA, actualF, config, converter);
    checkDepthLabelling(actualF);
  }
  private void checkEmptyPTA(
      String[][] arrayPlusStrings,
      String[][] arrayMinusStrings,
      boolean expectMaxAutomataToBeTheSameAsPTA) {
    Configuration conf = mainConfiguration.copy();
    Set<List<Label>> plusStrings = buildSet(arrayPlusStrings, conf, converter),
        minusStrings = buildSet(arrayMinusStrings, conf, converter);
    DirectedSparseGraph actualA = null,
        actualC = null,
        actualD = null,
        actualE = null,
        actualF = null;
    IllegalArgumentException eA = null, eC = null, eD = null, eE = null, eF = null;
    try {
      actualA = Test_Orig_RPNIBlueFringeLearner.createAugmentedPTA(plusStrings, minusStrings);
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eA = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      l.init(plusStrings, minusStrings);
      actualC = l.getTentativeAutomaton().pathroutines.getGraph();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eC = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      PTASequenceEngine engine = buildPTA(plusStrings, minusStrings);
      checkPTAConsistency(engine, plusStrings, true);
      if (engine.numberOfLeafNodes() > 0) checkPTAConsistency(engine, minusStrings, false);
      l.init(engine, 0, 0);
      actualD = l.getTentativeAutomaton().pathroutines.getGraph();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eD = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      l.init(buildPTA(plusStrings, buildSet(new String[][] {}, config, converter)), 0, 0);
      for (List<Label> seq : minusStrings) {
        Set<List<Label>> negativeSeq = new HashSet<List<Label>>();
        negativeSeq.add(seq);
        l.getTentativeAutomaton()
            .paths
            .augmentPTA(buildPTA(buildSet(new String[][] {}, config, converter), negativeSeq));
      }
      actualE = l.getTentativeAutomaton().pathroutines.getGraph();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eE = e;
    }

    try {
      Configuration config = mainConfiguration.copy();
      RPNIUniversalLearner l =
          new RPNIUniversalLearner(
              null, new LearnerEvaluationConfiguration(null, null, config, null, null));
      config.setLearnerIdMode(Configuration.IDMode.POSITIVE_NEGATIVE);
      l.getTentativeAutomaton().initPTA();
      l.getTentativeAutomaton().paths.augmentPTA(minusStrings, false, true);
      l.getTentativeAutomaton().paths.augmentPTA(plusStrings, true, true);
      actualF = l.getTentativeAutomaton().pathroutines.getGraph();
    } catch (IllegalArgumentException e) {
      // ignore this - it might be expected.
      eF = e;
    }

    if (eA != null) { // an exception has been thrown, hence verify that all way of PTA construction
      // have thrown too.
      Assert.assertNotNull(eC);
      Assert.assertNotNull(eD);
      Assert.assertNotNull(eE);
      if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNotNull(eF);
      throw eA;
    }

    Assert.assertNull(eA);
    Assert.assertNull(eC);
    Assert.assertNull(eD);
    Assert.assertNull(eE);
    if (expectMaxAutomataToBeTheSameAsPTA) Assert.assertNull(eF);

    Assert.assertEquals(1, actualA.getVertices().size());
    Assert.assertEquals(
        true,
        DeterministicDirectedSparseGraph.isAccept(
            ((Vertex) actualA.getVertices().iterator().next())));
    Assert.assertEquals(0, actualA.getEdges().size());

    Assert.assertEquals(1, actualC.getVertices().size());
    Assert.assertEquals(
        true,
        DeterministicDirectedSparseGraph.isAccept(
            ((Vertex) actualC.getVertices().iterator().next())));
    Assert.assertEquals(0, ((CmpVertex) (actualC.getVertices().iterator().next())).getDepth());
    Assert.assertEquals(0, actualC.getEdges().size());

    Assert.assertEquals(1, actualD.getVertices().size());
    Assert.assertEquals(
        true,
        DeterministicDirectedSparseGraph.isAccept(
            ((Vertex) actualD.getVertices().iterator().next())));
    Assert.assertEquals(0, ((CmpVertex) (actualD.getVertices().iterator().next())).getDepth());
    Assert.assertEquals(0, actualD.getEdges().size());

    Assert.assertEquals(1, actualE.getVertices().size());
    Assert.assertEquals(
        true,
        DeterministicDirectedSparseGraph.isAccept(
            ((Vertex) actualE.getVertices().iterator().next())));
    Assert.assertEquals(0, ((CmpVertex) (actualE.getVertices().iterator().next())).getDepth());
    Assert.assertEquals(0, actualE.getEdges().size());

    if (expectMaxAutomataToBeTheSameAsPTA) {
      Assert.assertEquals(1, actualF.getVertices().size());
      Assert.assertEquals(
          true,
          DeterministicDirectedSparseGraph.isAccept(
              ((Vertex) actualF.getVertices().iterator().next())));
      Assert.assertEquals(0, ((CmpVertex) (actualF.getVertices().iterator().next())).getDepth());
      Assert.assertEquals(0, actualF.getEdges().size());
    }
  }