public void inverseTransform(
      final Number3D position, final Number3D scale, final Quaternion orientation) {
    Number3D invTranslate = position.inverse();
    Number3D invScale = new Number3D(1 / scale.x, 1 / scale.y, 1 / scale.z);
    Quaternion invRot = orientation.inverse();

    invTranslate = invRot.multiply(invTranslate);
    invTranslate.multiply(invScale);
    invRot.toRotationMatrix(mTmp);

    m[0] = invScale.x * mTmp[0];
    m[1] = invScale.x * mTmp[1];
    m[2] = invScale.x * mTmp[2];
    m[3] = invTranslate.x;
    m[4] = invScale.y * mTmp[4];
    m[5] = invScale.y * mTmp[5];
    m[6] = invScale.y * mTmp[6];
    m[7] = invTranslate.y;
    m[8] = invScale.z * mTmp[8];
    m[9] = invScale.z * mTmp[9];
    m[10] = invScale.z * mTmp[10];
    m[11] = invTranslate.z;
    m[12] = 0;
    m[13] = 0;
    m[14] = 0;
    m[15] = 1;
  }
Beispiel #2
0
 public static Quaternion times(Quaternion result, Quaternion a, Quaternion b) {
   result.w = (a.w * b.w) - (a.x * b.x) - (a.y * b.y) - (a.z * b.z);
   result.x = (a.w * b.x) + (a.x * b.w) + (a.y * b.z) - (a.z * b.y);
   result.y = (a.w * b.y) - (a.x * b.z) + (a.y * b.w) + (a.z * b.x);
   result.z = (a.w * b.z) + (a.x * b.y) - (a.y * b.x) + (a.z * b.w);
   return result;
 }
Beispiel #3
0
 public static Quaternion makeRotation(Quaternion result, float theta, Vector axis) {
   float halfTheta = theta / 2;
   float sinHalfTheta = GMath.sin(halfTheta);
   result.w = GMath.cos(halfTheta);
   result.x = axis.getX() * sinHalfTheta;
   result.y = axis.getY() * sinHalfTheta;
   result.z = axis.getZ() * sinHalfTheta;
   return result;
 }
Beispiel #4
0
 /**
  * Post multiplies this {@link Matrix4} with the rotation specified by the provided {@link
  * Quaternion}.
  *
  * @param quat {@link Quaternion} describing the rotation to apply.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 rotate(@NonNull Quaternion quat) {
   if (mMatrix == null) {
     mMatrix = quat.toRotationMatrix();
   } else {
     quat.toRotationMatrix(mMatrix);
   }
   return multiply(mMatrix);
 }
Beispiel #5
0
 /**
  * Creates a string to describe this Rotation as a quaternion.
  *
  * @return A string that describes this Rotation as a quaternion.
  */
 public String toQuaternionString() {
   return "("
       + quaternion.getX()
       + ", "
       + quaternion.getY()
       + ", "
       + quaternion.getZ()
       + ", "
       + quaternion.getW()
       + ")";
 }
Beispiel #6
0
  /**
   * http://ogre.sourcearchive.com/documentation/1.4.5/classOgre_1_1Vector3_eeef4472ad0c4d5f34a038a9f2faa819.html#eeef4472ad0c4d5f34a038a9f2faa819
   *
   * @param direction
   * @return
   */
  public Quaternion getRotationTo(Number3D direction) {
    // Based on Stan Melax's article in Game Programming Gems
    Quaternion q = new Quaternion();
    // Copy, since cannot modify local
    Number3D v0 = this;
    Number3D v1 = direction;
    v0.normalize();
    v1.normalize();

    float d = Number3D.dot(v0, v1);
    // If dot == 1, vectors are the same
    if (d >= 1.0f) {
      q.setIdentity();
    }
    if (d < 0.000001f - 1.0f) {
      // Generate an axis
      Number3D axis = Number3D.cross(Number3D.getAxisVector(Axis.X), this);
      if (axis.length() == 0) // pick another if colinear
      axis = Number3D.cross(Number3D.getAxisVector(Axis.Y), this);
      axis.normalize();
      q.fromAngleAxis(MathUtil.radiansToDegrees(MathUtil.PI), axis);
    } else {
      float s = FloatMath.sqrt((1 + d) * 2);
      float invs = 1f / s;

      Number3D c = Number3D.cross(v0, v1);

      q.x = c.x * invs;
      q.y = c.y * invs;
      q.z = c.z * invs;
      q.w = s * 0.5f;
      q.normalize();
    }
    return q;
  }
Beispiel #7
0
  /**
   * Redefines this Rotation to a given Quaternion rotation. Note that quaternion-based rotation
   * requires the quaternion to be normalized. Thus, rotation cannot be defined by a zero
   * quaternion.
   *
   * @param quaternion The quaternion defining the rotation.
   * @throws IllegalArgumentException if the given Quaternion is a zero quaternion.
   */
  public void setQuaternion(Quaternion quaternion) {
    // zero quaternion?
    if (quaternion.isZeroQuaternion())
      throw new IllegalArgumentException("Rotation cannot be defined by a zero quaternion.");

    this.quaternion = quaternion;
  }
Beispiel #8
0
 public Quaternion multiply(Quaternion other) {
   double a, b, c, d;
   double x1, y1, z1;
   double x2, y2, z2, w2;
   x1 = v.getX();
   y1 = v.getY();
   z1 = v.getZ();
   w2 = other.getW();
   x2 = other.getX();
   y2 = other.getY();
   z2 = other.getZ();
   a = w * w2 - x1 * x2 - y1 * y2 - z1 * z2;
   b = w * x2 + x1 * w2 + y1 * z2 - z1 * y2;
   c = w * y2 - x1 * z2 + y1 * w2 + z1 * x2;
   d = w * z2 + x1 * y2 - y1 * x2 + z1 * w2;
   return new Quaternion(a, b, c, d);
 }
  public void animateTransform(Quaternion transform) {
    // mAnimateTransform = transform;

    if (rot != null) {
      rot.mulLeft(transform);
      mTransform.set(rot);
    }
    Iterator<GLVertex> iter = mVertexList.iterator();
    while (iter.hasNext()) {
      GLVertex vertex = iter.next();
      mEnv.transformVertex(vertex, mTransform);
    }
  }
  public static Quaternion slerp(double amount, Quaternion value1, Quaternion value2) {
    if ((value1 == null) || (value2 == null)) {
      throw new IllegalArgumentException("Quaternion Is Null");
    }

    if (amount < 0.0) return value1;
    else if (amount > 1.0) return value2;

    double dot = value1.dot(value2);
    double x2, y2, z2, w2;
    if (dot < 0.0) {
      dot = 0.0 - dot;
      x2 = 0.0 - value2.x;
      y2 = 0.0 - value2.y;
      z2 = 0.0 - value2.z;
      w2 = 0.0 - value2.w;
    } else {
      x2 = value2.x;
      y2 = value2.y;
      z2 = value2.z;
      w2 = value2.w;
    }

    double t1, t2;

    final double EPSILON = 0.0001;
    if ((1.0 - dot) > EPSILON) // standard case (slerp)
    {
      double angle = Math.acos(dot);
      double sinAngle = Math.sin(angle);
      t1 = Math.sin((1.0 - amount) * angle) / sinAngle;
      t2 = Math.sin(amount * angle) / sinAngle;
    } else // just lerp
    {
      t1 = 1.0 - amount;
      t2 = amount;
    }

    return new Quaternion(
        (value1.x * t1) + (x2 * t2),
        (value1.y * t1) + (y2 * t2),
        (value1.z * t1) + (z2 * t2),
        (value1.w * t1) + (w2 * t2));
  }
  public void transform(
      final Number3D position, final Number3D scale, final Quaternion orientation) {
    orientation.toRotationMatrix(mTmp);

    m[0] = scale.x * mTmp[0];
    m[1] = scale.y * mTmp[1];
    m[2] = scale.z * mTmp[2];
    m[3] = position.x;
    m[4] = scale.x * mTmp[4];
    m[5] = scale.y * mTmp[5];
    m[6] = scale.z * mTmp[6];
    m[7] = position.y;
    m[8] = scale.x * mTmp[8];
    m[9] = scale.y * mTmp[9];
    m[10] = scale.z * mTmp[10];
    m[11] = position.z;
    m[12] = 0;
    m[13] = 0;
    m[14] = 0;
    m[15] = 1;
  }
Beispiel #12
0
    public void setHoverPosition(GL10 gl, int nFlags, Planet m_Planet) {

      gl.glMatrixMode(GL10.GL_MODELVIEW);
      gl.glLoadIdentity();
      Quaternion orientation = Miniglu.gluGetOrientation();

      Vector3 vpLoc = new Vector3(0.0f, 0.0f, 0.0f);
      vpLoc.x = m_Eyeposition[0];
      vpLoc.y = m_Eyeposition[1];
      vpLoc.z = m_Eyeposition[2];

      Vector3 objectLoc = new Vector3(0.0f, 0.0f, 0.0f);
      objectLoc.x = m_Planet.m_Pos[0];
      objectLoc.y = m_Planet.m_Pos[1];
      objectLoc.z = m_Planet.m_Pos[2];

      Vector3 offset = new Vector3(0.0f, 0.0f, 0.0f);
      offset.x = (objectLoc.x - vpLoc.x);
      offset.y = (objectLoc.y - vpLoc.y);
      offset.z = (objectLoc.z - vpLoc.z);

      Vector3 offsetv = new Vector3(0.0f, 0.0f, 0.0f);
      offsetv.z = Vector3Distance(objectLoc, vpLoc);

      gl.glMatrixMode(GL10.GL_MODELVIEW);

      // Rotate around the Y-axis.

      float s = (float) Math.sin(0.0005);
      float c = (float) Math.cos(0.0005);

      Quaternion tempQ2 = new Quaternion(0, s, 0, c);
      tempQ2 = tempQ2.mulThis(orientation);
      orientation = tempQ2;

      float matrix3[][] = new float[3][3];
      matrix3 = orientation.toMatrix();
      matrix3 = orientation.tranposeMatrix(matrix3);
      offsetv = orientation.Matrix3MultiplyVector3(matrix3, offsetv);

      m_Eyeposition[0] = (float) (objectLoc.x + offsetv.x);
      m_Eyeposition[1] = (float) (objectLoc.y + offsetv.y);
      m_Eyeposition[2] = (float) (objectLoc.z + offsetv.z);

      lookAtTarget(gl, m_Planet);
    }
Beispiel #13
0
 /**
  * Post multiplies this {@link Matrix4} with the rotation specified by the provided cardinal axis
  * and angle.
  *
  * @param axis {@link Axis} The cardinal axis of rotation.
  * @param angle double The angle of rotation in degrees.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 rotate(@NonNull Axis axis, double angle) {
   return angle == 0 ? this : rotate(mQuat.fromAngleAxis(axis, angle));
 }
Beispiel #14
0
 public Quaternion rotate(double radians, Vector3d axis) {
   Quaternion rotation = Quaternion.rotationQuat(radians, axis);
   return (rotation.multiply(this));
 }
Beispiel #15
0
  /**
   * Interpolates between this Rotation and a given Rotation by a given interpolation factor.
   *
   * @param rotation The terminal point of interpolation.
   * @param factor The interpolation factor. This value will be clamped to the range [0.0, 1.0].
   */
  public Rotation slerp(Rotation rotation, double factor) {
    // store quaternion components for easy access
    Quaternion startQuat = this.quaternion;
    Quaternion endQuat = rotation.getQuaternion();
    double x1 = startQuat.getX();
    double y1 = startQuat.getY();
    double z1 = startQuat.getZ();
    double w1 = startQuat.getW();
    double x2 = endQuat.getX();
    double y2 = endQuat.getY();
    double z2 = endQuat.getZ();
    double w2 = endQuat.getW();

    // calculate angle between start and end
    double cosHalfTheta = w1 * w2 + x1 * x2 + y1 * y2 + z1 * z2;

    // if start=end or start=-end, we can return start
    if (Math.abs(cosHalfTheta) >= 1.0) return this;

    // calculate temporary values
    double halfTheta = Math.acos(cosHalfTheta);
    double sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);

    // if theta is 180°, then the result is not fully defined
    // we could rotate around any axis normal to start or end
    if (Math.abs(sinHalfTheta) < 0.001) {
      Vector3D v1 = startQuat.vectorComponent();
      Vector3D v2 = endQuat.vectorComponent();
      Vector3D vect = v1.add(v2).multiply(0.5);
      double scalar = (w1 + w2) * 0.5;
      return new Rotation(new Quaternion(vect, scalar));
    }

    double ratioA = Math.sin((1 - factor) * halfTheta) / sinHalfTheta;
    double ratioB = Math.sin(factor * halfTheta) / sinHalfTheta;

    // compute and return quaternion
    Vector3D v1 = startQuat.vectorComponent();
    Vector3D v2 = endQuat.vectorComponent();
    Vector3D vect = v1.multiply(ratioA).add((v2).multiply(ratioB));
    double scalar = (w1 * ratioA) + (w2 * ratioB);
    return new Rotation(new Quaternion(vect, scalar));
  }
Beispiel #16
0
 public Vector3d rotateVector(Vector3d v) {
   Quaternion q = new Quaternion(0, v);
   Quaternion newQ = (this.multiply(q)).multiply(getInverse());
   return newQ.getVector();
 }
Beispiel #17
0
 public Quaternion add(Quaternion other) {
   return new Quaternion(
       w + other.getW(), getX() + other.getX(), getY() + other.getY(), getZ() + other.getZ());
 }
Beispiel #18
0
 /**
  * Sets this {@link Matrix4} to the rotation between two vectors. The incoming vectors should be
  * normalized.
  *
  * @param x1 double The x component of the base vector.
  * @param y1 double The y component of the base vector.
  * @param z1 double The z component of the base vector.
  * @param x2 double The x component of the target vector.
  * @param y2 double The y component of the target vector.
  * @param z2 double The z component of the target vector.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setToRotation(double x1, double y1, double z1, double x2, double y2, double z2) {
   return setAll(mQuat.fromRotationBetween(x1, y1, z1, x2, y2, z2));
 }
Beispiel #19
0
 /**
  * Sets this {@link Matrix4} to the rotation between two {@link Vector3} objects.
  *
  * @param v1 {@link Vector3} The base vector. Should be normalized.
  * @param v2 {@link Vector3} The target vector. Should be normalized.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setToRotation(@NonNull Vector3 v1, @NonNull Vector3 v2) {
   return setAll(mQuat.fromRotationBetween(v1, v2));
 }
Beispiel #20
0
 /**
  * Sets this {@link Matrix4} to the specified rotation around the specified axis.
  *
  * @param x double The x component of the axis of rotation.
  * @param y double The y component of the axis of rotation.
  * @param z double The z component of the axis of rotation.
  * @param angle double The rotation angle.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setToRotation(double x, double y, double z, double angle) {
   return angle == 0 ? identity() : setAll(mQuat.fromAngleAxis(x, y, z, angle));
 }
Beispiel #21
0
 /**
  * Sets this {@link Matrix4} to the specified rotation around the specified cardinal axis.
  *
  * @param axis {@link Axis} The axis of rotation.
  * @param angle double The rotation angle in degrees.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setToRotation(@NonNull Axis axis, double angle) {
   return angle == 0 ? identity() : setAll(mQuat.fromAngleAxis(axis, angle));
 }
Beispiel #22
0
 /**
  * Post multiplies this {@link Matrix4} with the rotation between the two provided {@link
  * Vector3}s.
  *
  * @param v1 {@link Vector3} The base vector.
  * @param v2 {@link Vector3} The target vector.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 rotate(@NonNull Vector3 v1, @NonNull Vector3 v2) {
   return rotate(mQuat.fromRotationBetween(v1, v2));
 }
Beispiel #23
0
 /**
  * Sets this {@link Matrix4} to the rotation specified by the provided Euler angles.
  *
  * @param yaw double The yaw angle in degrees.
  * @param pitch double The pitch angle in degrees.
  * @param roll double The roll angle in degrees.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setToRotation(double yaw, double pitch, double roll) {
   return setAll(mQuat.fromEuler(yaw, pitch, roll));
 }
Beispiel #24
0
 /**
  * Sets this {@link Matrix4} to a look at matrix with a direction and up {@link Vector3}. You can
  * multiply this with a translation {@link Matrix4} to get a camera Model-View matrix.
  *
  * @param direction {@link Vector3} The look direction.
  * @param up {@link Vector3} The up axis.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setToLookAt(@NonNull Vector3 direction, @NonNull Vector3 up) {
   mQuat.lookAt(direction, up);
   return setAll(mQuat);
 }
Beispiel #25
0
 /**
  * Sets the elements of this {@link Matrix4} based on the rotation represented by the provided
  * quaternion elements.
  *
  * @param w double The w component of the quaternion.
  * @param x double The x component of the quaternion.
  * @param y double The y component of the quaternion.
  * @param z double The z component of the quaternion.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setAll(double w, double x, double y, double z) {
   return setAll(mQuat.setAll(w, x, y, z));
 }
Beispiel #26
0
 /**
  * Sets the elements of this {@link Matrix4} based on the rotation represented by the provided
  * {@link Quaternion}.
  *
  * @param quat {@link Quaternion} The {@link Quaternion} to represent.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 setAll(@NonNull Quaternion quat) {
   quat.toRotationMatrix(m);
   return this;
 }
Beispiel #27
0
 /**
  * Multiplies the vector by the given {@link Quaternion}.
  *
  * @return This vector for chaining
  */
 public Vector3 mul(final Quaternion quat) {
   return quat.transform(this);
 }
Beispiel #28
0
 /**
  * Post multiplies this {@link Matrix4} with the rotation specified by the provided axis and
  * angle.
  *
  * @param x double The x component of the axis of rotation.
  * @param y double The y component of the axis of rotation.
  * @param z double The z component of the axis of rotation.
  * @param angle double The angle of rotation in degrees.
  * @return A reference to this {@link Matrix4} to facilitate chaining.
  */
 @NonNull
 public Matrix4 rotate(double x, double y, double z, double angle) {
   return angle == 0 ? this : rotate(mQuat.fromAngleAxis(x, y, z, angle));
 }