@Test public void testNotEndsWith() { // GIVEN String expected = "value"; String actual = "value test"; // WHEN / THEN GAssert.assertNotEndsWith(expected, actual); }
@Test public void testStartsWith() { // GIVEN String expected = "test"; String actual = "test value"; // WHEN / THEN GAssert.assertStartsWith(expected, actual); }
@Test public void testAssertEquals_list() { // GIVEN ImmutableList<String> expected = ImmutableList.of("a"); ImmutableList<String> actual = ImmutableList.of("a"); // WHEN / THEN GAssert.assertEquals(expected, actual); }
@Test public void testAssertEquals_list_null() { // GIVEN ImmutableList<String> expected = null; ImmutableList<String> actual = null; // WHEN / THEN GAssert.assertEquals(expected, actual); }
@Test public void testAssertEquals_map() { // GIVEN ImmutableMap<String, String> expected = ImmutableMap.of("a", "a"); ImmutableMap<String, String> actual = ImmutableMap.of("a", "a"); // WHEN / THEN GAssert.assertEquals(expected, actual); }
@Test public void testNotEndsWith_actualToShort_fail() { // GIVEN String expected = "test"; String actual = "lue"; // WHEN GAssert.assertNotEndsWith(expected, actual); // THEN }
@Test public void testAssertEquals_listTypes_fail() { // GIVEN ImmutableList<String> expected = ImmutableList.of("a"); ImmutableList<Integer> actual = ImmutableList.of(4); try { // WHEN GAssert.assertEquals(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals("expected:<[a]> but was:<[4]>", e.getMessage()); } }
@Test public void testAssertEquals_list_null_expected() { // GIVEN ImmutableList<String> expected = null; ImmutableList<String> actual = ImmutableList.of("a"); try { // WHEN GAssert.assertEquals(expected, actual); fail(); } catch (AssertionError e) { // THEN assertEquals("expected:<null> but was:<a>", e.getMessage()); } }
@Test public void testAssertEquals_map_value_fail() { // GIVEN ImmutableMap<String, String> expected = ImmutableMap.of("a", "a"); ImmutableMap<String, String> actual = ImmutableMap.of("a", "b"); try { // WHEN GAssert.assertEquals(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals("expected:<a=[a]> but was:<a=[b]>", e.getMessage()); } }
@Test public void testEndsWith_fail_toShort() { // GIVEN String expected = ""; String actual = "test value"; try { // WHEN GAssert.assertEndsWith(expected, actual); fail(); } catch (AssertionError e) { // THEN assertEquals( "expected value: \"\" is too short expected:<[]> but was:<[test value]>", e.getMessage()); } }
@Test public void testNotEndsWith_fail_toShort() { // GIVEN String expected = ""; String actual = "test value"; try { // WHEN GAssert.assertNotEndsWith(expected, actual); fail(); } catch (AssertionError e) { // THEN assertEquals( "Expected: not a string ending with \"\"\n" // + " but: was \"test value\" expected:<[]> but was:<[test value]>", e.getMessage()); } }
@Test public void testNotEndsWith_fail() { // GIVEN String expected = "test"; String actual = "value test"; try { // WHEN GAssert.assertNotEndsWith(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals( "Expected: not a string ending with \"test\"\n" // + " but: was \"value test\" expected:<[]test> but was:<[value ]test>", e.getMessage()); } }
@Test public void testEndsWith_actualToShort_fail() { // GIVEN String expected = "test"; String actual = "lue"; try { // WHEN GAssert.assertEndsWith(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals( "Expected: a string ending with \"test\"\n" // + " but: was \"lue\" expected:<[test]> but was:<[lue]>", e.getMessage()); } }
@Test public void testStartsWith_fail() { // GIVEN String expected = "value"; String actual = "test value"; try { // WHEN GAssert.assertStartsWith(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals( "Expected: a string starting with \"value\"\n" // + " but: was \"test value\" expected:<[]value> but was:<[test ]value>", e.getMessage()); } }
@Test public void testAssertEquals_map_value_types_fail() { // GIVEN ImmutableMap<String, Integer> expected = ImmutableMap.of("a", 4); ImmutableMap<String, String> actual = ImmutableMap.of("a", "b"); try { // WHEN GAssert.assertEquals(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals( "expected:<...java.lang.String]}={[4 [java.lang.Integer]]}> " + "but was:<...java.lang.String]}={[b [java.lang.String]]}>", e.getMessage()); } }
@Test public void testAssertEquals_map_key_type_fail() { // GIVEN ImmutableMap<Integer, String> expected = ImmutableMap.of(4, "a"); ImmutableMap<String, String> actual = ImmutableMap.of("b", "b"); try { // WHEN GAssert.assertEquals(expected, actual); fail(); } catch (ComparisonFailure e) { // THEN assertEquals( "expected:<{[4 [java.lang.Integer]}={a] [java.lang.String]}>" // + " but was:<{[b [java.lang.String]}={b] [java.lang.String]}>", e.getMessage()); } }
public static int getLevenshteinDistance(final String s, final String t) { GAssert.notNull(s, "s"); GAssert.notNull(t, "t"); /* The difference between this impl. and the previous is that, rather than creating and retaining a matrix of size s.length()+1 by t.length()+1, we maintain two single-dimensional arrays of length s.length()+1. The first, d, is the 'current working' distance array that maintains the newest distance cost counts as we iterate through the characters of String s. Each time we increment the index of String t we are comparing, d is copied to p, the second int[]. Doing so allows us to retain the previous cost counts as required by the algorithm (taking the minimum of the cost count to the left, up one, and diagonally up and to the left of the current cost count being calculated). (Note that the arrays aren't really copied anymore, just switched...this is clearly much better than cloning an array or doing a System.arraycopy() each time through the outer loop.) Effectively, the difference between the two implementations is this one does not cause an out of memory condition when calculating the LD over two very large strings. */ final int n = s.length(); // length of s final int m = t.length(); // length of t if (n == 0) { return m; } else if (m == 0) { return n; } int p[] = new int[n + 1]; // 'previous' cost array, horizontally int d[] = new int[n + 1]; // cost array, horizontally int _d[]; // placeholder to assist in swapping p and d // indexes into strings s and t int i; // iterates through s int j; // iterates through t char t_j; // jth character of t int cost; // cost for (i = 0; i <= n; i++) { p[i] = i; } for (j = 1; j <= m; j++) { t_j = t.charAt(j - 1); d[0] = j; for (i = 1; i <= n; i++) { cost = s.charAt(i - 1) == t_j ? 0 : 1; // minimum of cell to the left+1, to the top+1, diagonally left and up +cost d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost); } // copy current distance counts to 'previous row' distance counts _d = p; p = d; d = _d; } // our last action in the above loop was to switch d and p, so p now // actually has the most recent cost counts return p[n]; }