/** * Evaluates cluster assignments with respect to actual class labels. Assumes that m_Clusterer has * been trained and tested on inst (minus the class). * * @param inst the instances (including class) to evaluate with respect to * @exception Exception if something goes wrong */ private void evaluateClustersWithRespectToClass(Instances inst) throws Exception { int numClasses = inst.classAttribute().numValues(); int[][] counts = new int[m_numClusters][numClasses]; int[] clusterTotals = new int[m_numClusters]; double[] best = new double[m_numClusters + 1]; double[] current = new double[m_numClusters + 1]; for (int i = 0; i < inst.numInstances(); i++) { counts[(int) m_clusterAssignments[i]][(int) inst.instance(i).classValue()]++; clusterTotals[(int) m_clusterAssignments[i]]++; } best[m_numClusters] = Double.MAX_VALUE; mapClasses(0, counts, clusterTotals, current, best, 0); m_clusteringResults.append("\n\nClass attribute: " + inst.classAttribute().name() + "\n"); m_clusteringResults.append("Classes to Clusters:\n"); String matrixString = toMatrixString(counts, clusterTotals, inst); m_clusteringResults.append(matrixString).append("\n"); int Cwidth = 1 + (int) (Math.log(m_numClusters) / Math.log(10)); // add the minimum error assignment for (int i = 0; i < m_numClusters; i++) { if (clusterTotals[i] > 0) { m_clusteringResults.append("Cluster " + Utils.doubleToString((double) i, Cwidth, 0)); m_clusteringResults.append(" <-- "); if (best[i] < 0) { m_clusteringResults.append("No class\n"); } else { m_clusteringResults.append(inst.classAttribute().value((int) best[i])).append("\n"); } } } m_clusteringResults.append( "\nIncorrectly clustered instances :\t" + best[m_numClusters] + "\t" + (Utils.doubleToString((best[m_numClusters] / inst.numInstances() * 100.0), 8, 4)) + " %\n"); // copy the class assignments m_classToCluster = new int[m_numClusters]; for (int i = 0; i < m_numClusters; i++) { m_classToCluster[i] = (int) best[i]; } }
/** * Returns a "confusion" style matrix of classes to clusters assignments * * @param counts the counts of classes for each cluster * @param clusterTotals total number of examples in each cluster * @param inst the training instances (with class) * @exception Exception if matrix can't be generated */ private String toMatrixString(int[][] counts, int[] clusterTotals, Instances inst) throws Exception { StringBuffer ms = new StringBuffer(); int maxval = 0; for (int i = 0; i < m_numClusters; i++) { for (int j = 0; j < counts[i].length; j++) { if (counts[i][j] > maxval) { maxval = counts[i][j]; } } } int Cwidth = 1 + Math.max( (int) (Math.log(maxval) / Math.log(10)), (int) (Math.log(m_numClusters) / Math.log(10))); ms.append("\n"); for (int i = 0; i < m_numClusters; i++) { if (clusterTotals[i] > 0) { ms.append(" ").append(Utils.doubleToString((double) i, Cwidth, 0)); } } ms.append(" <-- assigned to cluster\n"); for (int i = 0; i < counts[0].length; i++) { for (int j = 0; j < m_numClusters; j++) { if (clusterTotals[j] > 0) { ms.append(" ").append(Utils.doubleToString((double) counts[j][i], Cwidth, 0)); } } ms.append(" | ").append(inst.classAttribute().value(i)).append("\n"); } return ms.toString(); }
/** * Performs a cross-validation for a DensityBasedClusterer clusterer on a set of instances. * * @param clustererString a string naming the class of the clusterer * @param data the data on which the cross-validation is to be performed * @param numFolds the number of folds for the cross-validation * @param options the options to the clusterer * @param random a random number generator * @return a string containing the cross validated log likelihood * @exception Exception if a clusterer could not be generated */ public static String crossValidateModel( String clustererString, Instances data, int numFolds, String[] options, Random random) throws Exception { Clusterer clusterer = null; Instances train, test; String[] savedOptions = null; double foldAv; double CvAv = 0.0; double[] tempDist; StringBuffer CvString = new StringBuffer(); if (options != null) { savedOptions = new String[options.length]; } data = new Instances(data); // create clusterer try { clusterer = (Clusterer) Class.forName(clustererString).newInstance(); } catch (Exception e) { throw new Exception("Can't find class with name " + clustererString + '.'); } if (!(clusterer instanceof DensityBasedClusterer)) { throw new Exception(clustererString + " must be a distrinbution " + "clusterer."); } // Save options if (options != null) { System.arraycopy(options, 0, savedOptions, 0, options.length); } // Parse options if (clusterer instanceof OptionHandler) { try { ((OptionHandler) clusterer).setOptions(savedOptions); Utils.checkForRemainingOptions(savedOptions); } catch (Exception e) { throw new Exception("Can't parse given options in " + "cross-validation!"); } } CvAv = crossValidateModel((DensityBasedClusterer) clusterer, data, numFolds, random); CvString.append( "\n" + numFolds + " fold CV Log Likelihood: " + Utils.doubleToString(CvAv, 6, 4) + "\n"); return CvString.toString(); }
/** * Returns description of the bagged classifier. * * @return description of the bagged classifier as a string */ @Override public String toString() { if (m_Classifiers == null) { return "Bagging: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("All the base classifiers: \n\n"); for (int i = 0; i < m_Classifiers.length; i++) text.append(m_Classifiers[i].toString() + "\n\n"); if (m_CalcOutOfBag) { text.append("Out of bag error: " + Utils.doubleToString(m_OutOfBagError, 4) + "\n\n"); } return text.toString(); }
private static String numToString(double num) { int precision = 1; int whole = (int) Math.abs(num); double decimal = Math.abs(num) - whole; int nondecimal; nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1; precision = (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(num)) / Math.log(10)))) + 2 : 1; if (precision > 5) { precision = 1; } String numString = reconcile.weka.core.Utils.doubleToString(num, nondecimal + 1 + precision, precision); return numString; }
/** * Print the cluster statistics for either the training or the testing data. * * @param clusterer the clusterer to use for generating statistics. * @return a string containing cluster statistics. * @exception if statistics can't be generated. */ private static String printClusterStats(Clusterer clusterer, String fileName) throws Exception { StringBuffer text = new StringBuffer(); int i = 0; int cnum; double loglk = 0.0; double[] dist; double temp; int cc = clusterer.numberOfClusters(); double[] instanceStats = new double[cc]; int unclusteredInstances = 0; if (fileName.length() != 0) { BufferedReader inStream = null; try { inStream = new BufferedReader(new FileReader(fileName)); } catch (Exception e) { throw new Exception("Can't open file " + e.getMessage() + '.'); } Instances inst = new Instances(inStream, 1); while (inst.readInstance(inStream)) { try { cnum = clusterer.clusterInstance(inst.instance(0)); if (clusterer instanceof DensityBasedClusterer) { loglk += ((DensityBasedClusterer) clusterer).logDensityForInstance(inst.instance(0)); // temp = Utils.sum(dist); } instanceStats[cnum]++; } catch (Exception e) { unclusteredInstances++; } inst.delete(0); i++; } /* // count the actual number of used clusters int count = 0; for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { count++; } } if (count > 0) { double [] tempStats = new double [count]; count=0; for (i=0;i<cc;i++) { if (instanceStats[i] > 0) { tempStats[count++] = instanceStats[i]; } } instanceStats = tempStats; cc = instanceStats.length; } */ int clustFieldWidth = (int) ((Math.log(cc) / Math.log(10)) + 1); int numInstFieldWidth = (int) ((Math.log(i) / Math.log(10)) + 1); double sum = Utils.sum(instanceStats); loglk /= sum; text.append("Clustered Instances\n"); for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { text.append( Utils.doubleToString((double) i, clustFieldWidth, 0) + " " + Utils.doubleToString(instanceStats[i], numInstFieldWidth, 0) + " (" + Utils.doubleToString((instanceStats[i] / sum * 100.0), 3, 0) + "%)\n"); } } if (unclusteredInstances > 0) { text.append("\nUnclustered Instances : " + unclusteredInstances); } if (clusterer instanceof DensityBasedClusterer) { text.append("\n\nLog likelihood: " + Utils.doubleToString(loglk, 1, 5) + "\n"); } } return text.toString(); }
/** * Evaluate the clusterer on a set of instances. Calculates clustering statistics and stores * cluster assigments for the instances in m_clusterAssignments * * @param test the set of instances to cluster * @exception Exception if something goes wrong */ public void evaluateClusterer(Instances test) throws Exception { int i = 0; int cnum; double loglk = 0.0; double[] dist; double temp; int cc = m_Clusterer.numberOfClusters(); m_numClusters = cc; int numInstFieldWidth = (int) ((Math.log(test.numInstances()) / Math.log(10)) + 1); double[] instanceStats = new double[cc]; m_clusterAssignments = new double[test.numInstances()]; Instances testCopy = test; boolean hasClass = (testCopy.classIndex() >= 0); int unclusteredInstances = 0; // If class is set then do class based evaluation as well if (hasClass) { if (testCopy.classAttribute().isNumeric()) { throw new Exception("ClusterEvaluation: Class must be nominal!"); } Remove removeClass = new Remove(); removeClass.setAttributeIndices("" + (testCopy.classIndex() + 1)); removeClass.setInvertSelection(false); removeClass.setInputFormat(testCopy); testCopy = Filter.useFilter(testCopy, removeClass); } for (i = 0; i < testCopy.numInstances(); i++) { cnum = -1; try { if (m_Clusterer instanceof DensityBasedClusterer) { loglk += ((DensityBasedClusterer) m_Clusterer).logDensityForInstance(testCopy.instance(i)); // temp = Utils.sum(dist); // Utils.normalize(dist); cnum = m_Clusterer.clusterInstance(testCopy.instance(i)); // Utils.maxIndex(dist); m_clusterAssignments[i] = (double) cnum; } else { cnum = m_Clusterer.clusterInstance(testCopy.instance(i)); m_clusterAssignments[i] = (double) cnum; } } catch (Exception e) { unclusteredInstances++; } if (cnum != -1) { instanceStats[cnum]++; } } /* // count the actual number of used clusters int count = 0; for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { count++; } } if (count > 0) { double [] tempStats = new double [count]; double [] map = new double [m_clusterAssignments.length]; count=0; for (i=0;i<cc;i++) { if (instanceStats[i] > 0) { tempStats[count] = instanceStats[i]; map[i] = count; count++; } } instanceStats = tempStats; cc = instanceStats.length; for (i=0;i<m_clusterAssignments.length;i++) { m_clusterAssignments[i] = map[(int)m_clusterAssignments[i]]; } } */ double sum = Utils.sum(instanceStats); loglk /= sum; m_logL = loglk; m_clusteringResults.append(m_Clusterer.toString()); m_clusteringResults.append("Clustered Instances\n\n"); int clustFieldWidth = (int) ((Math.log(cc) / Math.log(10)) + 1); for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { m_clusteringResults.append( Utils.doubleToString((double) i, clustFieldWidth, 0) + " " + Utils.doubleToString(instanceStats[i], numInstFieldWidth, 0) + " (" + Utils.doubleToString((instanceStats[i] / sum * 100.0), 3, 0) + "%)\n"); } } if (unclusteredInstances > 0) { m_clusteringResults.append("\nUnclustered instances : " + unclusteredInstances); } if (m_Clusterer instanceof DensityBasedClusterer) { m_clusteringResults.append("\n\nLog likelihood: " + Utils.doubleToString(loglk, 1, 5) + "\n"); } if (hasClass) { evaluateClustersWithRespectToClass(test); } }