@Test /** Test the present value. */ public void presentValueExplicit() { final MultipleCurrencyAmount pv = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final double timeToExpiry = SWAPTION_LONG_PAYER.getTimeToExpiry(); final AnnuityPaymentFixed cfe = CFEC.visitSwap(SWAPTION_LONG_PAYER.getUnderlyingSwap(), MULTICURVES); final int numberOfPayments = cfe.getNumberOfPayments(); final double alpha[] = new double[numberOfPayments]; final double disccf[] = new double[numberOfPayments]; for (int loopcf = 0; loopcf < numberOfPayments; loopcf++) { alpha[loopcf] = MODEL.alpha( HW_PARAMETERS, 0.0, timeToExpiry, timeToExpiry, cfe.getNthPayment(loopcf).getPaymentTime()); disccf[loopcf] = MULTICURVES.getDiscountFactor(EUR, cfe.getNthPayment(loopcf).getPaymentTime()) * cfe.getNthPayment(loopcf).getAmount(); } final double kappa = MODEL.kappa(disccf, alpha); double pvExpected = 0.0; for (int loopcf = 0; loopcf < numberOfPayments; loopcf++) { pvExpected += disccf[loopcf] * NORMAL.getCDF(-kappa - alpha[loopcf]); } assertEquals( "Swaption physical - Hull-White - present value", pvExpected, pv.getAmount(EUR), 1E-2); final MultipleCurrencyAmount pv2 = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, cfe, HW_MULTICURVES); assertEquals("Swaption physical - Hull-White - present value", pv, pv2); }
/** Tests related to the pricing of physical delivery swaption in Hull-White one factor model. */ public class SwaptionPhysicalFixedIborHullWhiteMethodTest { private static final MulticurveProviderDiscount MULTICURVES = MulticurveProviderDiscountDataSets.createMulticurveEurUsd(); private static final IborIndex EURIBOR6M = MulticurveProviderDiscountDataSets.getIndexesIborMulticurveEurUsd()[1]; private static final Currency EUR = EURIBOR6M.getCurrency(); private static final Calendar CALENDAR = MulticurveProviderDiscountDataSets.getEURCalendar(); private static final HullWhiteOneFactorPiecewiseConstantParameters HW_PARAMETERS = HullWhiteDataSets.createHullWhiteParameters(); private static final HullWhiteOneFactorProviderDiscount HW_MULTICURVES = new HullWhiteOneFactorProviderDiscount(MULTICURVES, HW_PARAMETERS, EUR); private static final ZonedDateTime REFERENCE_DATE = DateUtils.getUTCDate(2011, 7, 7); // Swaption 5Yx5Y private static final int SPOT_LAG = EURIBOR6M.getSpotLag(); private static final int SWAP_TENOR_YEAR = 5; private static final Period SWAP_TENOR = Period.ofYears(SWAP_TENOR_YEAR); private static final GeneratorSwapFixedIbor EUR1YEURIBOR6M = GeneratorSwapFixedIborMaster.getInstance().getGenerator("EUR1YEURIBOR6M", CALENDAR); private static final ZonedDateTime EXPIRY_DATE = DateUtils.getUTCDate(2016, 7, 7); private static final boolean IS_LONG = true; private static final ZonedDateTime SETTLEMENT_DATE = ScheduleCalculator.getAdjustedDate(EXPIRY_DATE, SPOT_LAG, CALENDAR); private static final double NOTIONAL = 100000000; // 100m private static final double RATE = 0.0175; private static final boolean FIXED_IS_PAYER = true; private static final SwapFixedIborDefinition SWAP_PAYER_DEFINITION = SwapFixedIborDefinition.from( SETTLEMENT_DATE, SWAP_TENOR, EUR1YEURIBOR6M, NOTIONAL, RATE, FIXED_IS_PAYER); private static final SwapFixedIborDefinition SWAP_RECEIVER_DEFINITION = SwapFixedIborDefinition.from( SETTLEMENT_DATE, SWAP_TENOR, EUR1YEURIBOR6M, NOTIONAL, RATE, !FIXED_IS_PAYER); private static final SwaptionPhysicalFixedIborDefinition SWAPTION_LONG_PAYER_DEFINITION = SwaptionPhysicalFixedIborDefinition.from(EXPIRY_DATE, SWAP_PAYER_DEFINITION, IS_LONG); private static final SwaptionPhysicalFixedIborDefinition SWAPTION_LONG_RECEIVER_DEFINITION = SwaptionPhysicalFixedIborDefinition.from(EXPIRY_DATE, SWAP_RECEIVER_DEFINITION, IS_LONG); private static final SwaptionPhysicalFixedIborDefinition SWAPTION_SHORT_PAYER_DEFINITION = SwaptionPhysicalFixedIborDefinition.from(EXPIRY_DATE, SWAP_PAYER_DEFINITION, !IS_LONG); private static final SwaptionPhysicalFixedIborDefinition SWAPTION_SHORT_RECEIVER_DEFINITION = SwaptionPhysicalFixedIborDefinition.from(EXPIRY_DATE, SWAP_RECEIVER_DEFINITION, !IS_LONG); private static final SwapFixedCoupon<Coupon> SWAP_RECEIVER = SWAP_RECEIVER_DEFINITION.toDerivative(REFERENCE_DATE); private static final SwaptionPhysicalFixedIbor SWAPTION_LONG_PAYER = SWAPTION_LONG_PAYER_DEFINITION.toDerivative(REFERENCE_DATE); private static final SwaptionPhysicalFixedIbor SWAPTION_LONG_RECEIVER = SWAPTION_LONG_RECEIVER_DEFINITION.toDerivative(REFERENCE_DATE); private static final SwaptionPhysicalFixedIbor SWAPTION_SHORT_PAYER = SWAPTION_SHORT_PAYER_DEFINITION.toDerivative(REFERENCE_DATE); private static final SwaptionPhysicalFixedIbor SWAPTION_SHORT_RECEIVER = SWAPTION_SHORT_RECEIVER_DEFINITION.toDerivative(REFERENCE_DATE); // Calculator private static final SwaptionPhysicalFixedIborHullWhiteMethod METHOD_HW = SwaptionPhysicalFixedIborHullWhiteMethod.getInstance(); private static final SwapFixedCouponDiscountingMethod METHOD_SWAP = SwapFixedCouponDiscountingMethod.getInstance(); private static final CashFlowEquivalentCalculator CFEC = CashFlowEquivalentCalculator.getInstance(); private static final ParRateDiscountingCalculator PRDC = ParRateDiscountingCalculator.getInstance(); private static final PresentValueDiscountingCalculator PVDC = PresentValueDiscountingCalculator.getInstance(); private static final PresentValueCurveSensitivityDiscountingCalculator PVCSDC = PresentValueCurveSensitivityDiscountingCalculator.getInstance(); private static final PresentValueHullWhiteCalculator PVHWC = PresentValueHullWhiteCalculator.getInstance(); private static final PresentValueCurveSensitivityHullWhiteCalculator PVCSHWC = PresentValueCurveSensitivityHullWhiteCalculator.getInstance(); private static final double SHIFT = 1.0E-6; private static final ParameterSensitivityParameterCalculator<HullWhiteOneFactorProviderInterface> PS_HW_C = new ParameterSensitivityParameterCalculator<>(PVCSHWC); private static final ParameterSensitivityHullWhiteDiscountInterpolatedFDCalculator PS_HW_FDC = new ParameterSensitivityHullWhiteDiscountInterpolatedFDCalculator(PVHWC, SHIFT); private static final SwaptionPhysicalFixedIborHullWhiteNumericalIntegrationMethod METHOD_HW_INTEGRATION = SwaptionPhysicalFixedIborHullWhiteNumericalIntegrationMethod.getInstance(); private static final SwaptionPhysicalFixedIborHullWhiteApproximationMethod METHOD_HW_APPROXIMATION = SwaptionPhysicalFixedIborHullWhiteApproximationMethod.getInstance(); private static final int NB_PATH = 12500; private static final HullWhiteMonteCarloMethod METHOD_HW_MONTECARLO = new HullWhiteMonteCarloMethod(new NormalRandomNumberGenerator(0.0, 1.0), NB_PATH); private static final HullWhiteOneFactorPiecewiseConstantInterestRateModel MODEL = new HullWhiteOneFactorPiecewiseConstantInterestRateModel(); private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); private static final double TOLERANCE_PV = 1.0E-2; private static final double TOLERANCE_PV_DELTA = 1.0E+0; // Testing note: Sensitivity is for a movement of 1. 1E+2 = 1 cent for a 1 bp move. @Test /** Test the present value. */ public void presentValueExplicit() { final MultipleCurrencyAmount pv = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final double timeToExpiry = SWAPTION_LONG_PAYER.getTimeToExpiry(); final AnnuityPaymentFixed cfe = CFEC.visitSwap(SWAPTION_LONG_PAYER.getUnderlyingSwap(), MULTICURVES); final int numberOfPayments = cfe.getNumberOfPayments(); final double alpha[] = new double[numberOfPayments]; final double disccf[] = new double[numberOfPayments]; for (int loopcf = 0; loopcf < numberOfPayments; loopcf++) { alpha[loopcf] = MODEL.alpha( HW_PARAMETERS, 0.0, timeToExpiry, timeToExpiry, cfe.getNthPayment(loopcf).getPaymentTime()); disccf[loopcf] = MULTICURVES.getDiscountFactor(EUR, cfe.getNthPayment(loopcf).getPaymentTime()) * cfe.getNthPayment(loopcf).getAmount(); } final double kappa = MODEL.kappa(disccf, alpha); double pvExpected = 0.0; for (int loopcf = 0; loopcf < numberOfPayments; loopcf++) { pvExpected += disccf[loopcf] * NORMAL.getCDF(-kappa - alpha[loopcf]); } assertEquals( "Swaption physical - Hull-White - present value", pvExpected, pv.getAmount(EUR), 1E-2); final MultipleCurrencyAmount pv2 = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, cfe, HW_MULTICURVES); assertEquals("Swaption physical - Hull-White - present value", pv, pv2); } @Test /** Tests long/short parity. */ public void longShortParityExplicit() { final MultipleCurrencyAmount pvLong = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvShort = METHOD_HW.presentValue(SWAPTION_SHORT_PAYER, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - long/short parity", pvLong.getAmount(EUR), -pvShort.getAmount(EUR), TOLERANCE_PV); } @Test /** Tests payer/receiver/swap parity. */ public void payerReceiverParityExplicit() { final MultipleCurrencyAmount pvReceiverLong = METHOD_HW.presentValue(SWAPTION_LONG_RECEIVER, HW_MULTICURVES); final MultipleCurrencyAmount pvPayerShort = METHOD_HW.presentValue(SWAPTION_SHORT_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvSwap = SWAP_RECEIVER.accept(PVDC, MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - payer/receiver/swap parity", pvReceiverLong.getAmount(EUR) + pvPayerShort.getAmount(EUR), pvSwap.getAmount(EUR), TOLERANCE_PV); } @Test /** Tests the method against the present value calculator. */ public void presentValueMethodVsCalculator() { final MultipleCurrencyAmount pvMethod = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvCalculator = SWAPTION_LONG_PAYER.accept(PVHWC, HW_MULTICURVES); assertEquals( "SwaptionPhysicalFixedIborSABRMethod: present value : method and calculator", pvMethod, pvCalculator); } @Test /** Compare explicit formula with numerical integration. */ public void presentValueNumericalIntegration() { final MultipleCurrencyAmount pvPayerLongExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvPayerLongIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - explicit/numerical integration", pvPayerLongExplicit.getAmount(EUR), pvPayerLongIntegration.getAmount(EUR), TOLERANCE_PV); final MultipleCurrencyAmount pvPayerShortExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvPayerShortIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - explicit/numerical integration", pvPayerShortExplicit.getAmount(EUR), pvPayerShortIntegration.getAmount(EUR), TOLERANCE_PV); final MultipleCurrencyAmount pvReceiverLongExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvReceiverLongIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - explicit/numerical integration", pvReceiverLongExplicit.getAmount(EUR), pvReceiverLongIntegration.getAmount(EUR), TOLERANCE_PV); final MultipleCurrencyAmount pvReceiverShortExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvReceiverShortIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - explicit/numerical integration", pvReceiverShortExplicit.getAmount(EUR), pvReceiverShortIntegration.getAmount(EUR), TOLERANCE_PV); } @Test /** Compare explicit formula with approximated formula. */ public void presentValueApproximation() { final BlackImpliedVolatilityFormula implied = new BlackImpliedVolatilityFormula(); final double forward = SWAPTION_LONG_PAYER .getUnderlyingSwap() .accept(ParRateDiscountingCalculator.getInstance(), MULTICURVES); final double pvbp = METHOD_SWAP.presentValueBasisPoint(SWAPTION_LONG_PAYER.getUnderlyingSwap(), MULTICURVES); final MultipleCurrencyAmount pvPayerLongExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvPayerLongApproximation = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final BlackFunctionData data = new BlackFunctionData(forward, pvbp, 0.20); final double volExplicit = implied.getImpliedVolatility(data, SWAPTION_LONG_PAYER, pvPayerLongExplicit.getAmount(EUR)); final double volApprox = implied.getImpliedVolatility( data, SWAPTION_LONG_PAYER, pvPayerLongApproximation.getAmount(EUR)); assertEquals( "Swaption physical - Hull-White - present value - explicit/approximation", pvPayerLongExplicit.getAmount(EUR), pvPayerLongApproximation.getAmount(EUR), 5.0E+2); assertEquals( "Swaption physical - Hull-White - present value - explicit/approximation", volExplicit, volApprox, 2.5E-4); // 0.025% final MultipleCurrencyAmount pvReceiverLongExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvReceiverLongApproximation = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - present value - explicit/numerical integration", pvReceiverLongExplicit.getAmount(EUR), pvReceiverLongApproximation.getAmount(EUR), 5.0E+2); } @Test /** Approximation analysis. */ public void presentValueApproximationAnalysis() { final NormalImpliedVolatilityFormula implied = new NormalImpliedVolatilityFormula(); final int nbStrike = 20; final double[] pvExplicit = new double[nbStrike + 1]; final double[] pvApproximation = new double[nbStrike + 1]; final double[] strike = new double[nbStrike + 1]; final double[] volExplicit = new double[nbStrike + 1]; final double[] volApprox = new double[nbStrike + 1]; final double strikeRange = 0.010; final SwapFixedCoupon<Coupon> swap = SWAP_PAYER_DEFINITION.toDerivative(REFERENCE_DATE); final double forward = swap.accept(PRDC, MULTICURVES); final double pvbp = METHOD_SWAP.presentValueBasisPoint(swap, MULTICURVES); for (int loopstrike = 0; loopstrike <= nbStrike; loopstrike++) { strike[loopstrike] = forward - strikeRange + 3 * strikeRange * loopstrike / nbStrike; // From forward-strikeRange to forward+2*strikeRange final SwapFixedIborDefinition swapDefinition = SwapFixedIborDefinition.from( SETTLEMENT_DATE, SWAP_TENOR, EUR1YEURIBOR6M, NOTIONAL, strike[loopstrike], FIXED_IS_PAYER); final SwaptionPhysicalFixedIborDefinition swaptionDefinition = SwaptionPhysicalFixedIborDefinition.from(EXPIRY_DATE, swapDefinition, IS_LONG); final SwaptionPhysicalFixedIbor swaption = swaptionDefinition.toDerivative(REFERENCE_DATE); pvExplicit[loopstrike] = METHOD_HW.presentValue(swaption, HW_MULTICURVES).getAmount(EUR); pvApproximation[loopstrike] = METHOD_HW_APPROXIMATION.presentValue(swaption, HW_MULTICURVES).getAmount(EUR); final NormalFunctionData data = new NormalFunctionData(forward, pvbp, 0.01); volExplicit[loopstrike] = implied.getImpliedVolatility(data, swaption, pvExplicit[loopstrike]); volApprox[loopstrike] = implied.getImpliedVolatility(data, swaption, pvApproximation[loopstrike]); assertEquals( "Swaption physical - Hull-White - implied volatility - explicit/approximation", volExplicit[loopstrike], volApprox[loopstrike], 1.0E-3); // 0.10% } } @Test(enabled = true) /** Compare explicit formula with Monte-Carlo and long/short and payer/receiver parities. */ public void presentValueMonteCarlo() { HullWhiteMonteCarloMethod methodMC; methodMC = new HullWhiteMonteCarloMethod( new NormalRandomNumberGenerator(0.0, 1.0, new MersenneTwister()), NB_PATH); // Seed fixed to the DEFAULT_SEED for testing purposes. final MultipleCurrencyAmount pvPayerLongExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyAmount pvPayerLongMC = methodMC.presentValue(SWAPTION_LONG_PAYER, EUR, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - Monte Carlo", pvPayerLongExplicit.getAmount(EUR), pvPayerLongMC.getAmount(EUR), 1.0E+4); final double pvMCPreviousRun = 4221400.891; assertEquals( "Swaption physical - Hull-White - Monte Carlo", pvMCPreviousRun, pvPayerLongMC.getAmount(EUR), TOLERANCE_PV); methodMC = new HullWhiteMonteCarloMethod( new NormalRandomNumberGenerator(0.0, 1.0, new MersenneTwister()), NB_PATH); final MultipleCurrencyAmount pvPayerShortMC = methodMC.presentValue(SWAPTION_SHORT_PAYER, EUR, HW_MULTICURVES); assertEquals( "Swaption physical - Hull-White - Monte Carlo", -pvPayerLongMC.getAmount(EUR), pvPayerShortMC.getAmount(EUR), TOLERANCE_PV); final MultipleCurrencyAmount pvReceiverLongMC = methodMC.presentValue(SWAPTION_LONG_RECEIVER, EUR, HW_MULTICURVES); final MultipleCurrencyAmount pvSwap = SWAP_RECEIVER.accept(PVDC, MULTICURVES); assertEquals( "Swaption physical - Hull-White - Monte Carlo - payer/receiver/swap parity", pvReceiverLongMC.getAmount(EUR) + pvPayerShortMC.getAmount(EUR), pvSwap.getAmount(EUR), 1.0E+5); } @Test /** Tests the Hull-White parameters sensitivity for the explicit formula. */ public void presentValueHullWhiteSensitivityExplicit() { final double[] hwSensitivity = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); final int nbVolatility = HW_PARAMETERS.getVolatility().length; final double shiftVol = 1.0E-6; final double[] volatilityBumped = new double[nbVolatility]; System.arraycopy(HW_PARAMETERS.getVolatility(), 0, volatilityBumped, 0, nbVolatility); final double[] volatilityTime = new double[nbVolatility - 1]; System.arraycopy(HW_PARAMETERS.getVolatilityTime(), 1, volatilityTime, 0, nbVolatility - 1); final double[] pvBumpedPlus = new double[nbVolatility]; final double[] pvBumpedMinus = new double[nbVolatility]; final HullWhiteOneFactorPiecewiseConstantParameters parametersBumped = new HullWhiteOneFactorPiecewiseConstantParameters( HW_PARAMETERS.getMeanReversion(), volatilityBumped, volatilityTime); final HullWhiteOneFactorProviderDiscount bundleBumped = new HullWhiteOneFactorProviderDiscount(MULTICURVES, parametersBumped, EUR); for (int loopvol = 0; loopvol < nbVolatility; loopvol++) { volatilityBumped[loopvol] += shiftVol; parametersBumped.setVolatility(volatilityBumped); pvBumpedPlus[loopvol] = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, bundleBumped).getAmount(EUR); volatilityBumped[loopvol] -= 2 * shiftVol; parametersBumped.setVolatility(volatilityBumped); pvBumpedMinus[loopvol] = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, bundleBumped).getAmount(EUR); assertEquals( "Swaption - Hull-White sensitivity adjoint: derivative " + loopvol + " - difference:" + ((pvBumpedPlus[loopvol] - pvBumpedMinus[loopvol]) / (2 * shiftVol) - hwSensitivity[loopvol]), (pvBumpedPlus[loopvol] - pvBumpedMinus[loopvol]) / (2 * shiftVol), hwSensitivity[loopvol], TOLERANCE_PV_DELTA); volatilityBumped[loopvol] = HW_PARAMETERS.getVolatility()[loopvol]; } } @Test /** Tests long/short parity. */ public void presentValueHullWhiteSensitivitylongShortParityExplicit() { final double[] pvhwsLong = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); final double[] pvhwsShort = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_SHORT_PAYER, HW_MULTICURVES); for (int loophw = 0; loophw < pvhwsLong.length; loophw++) { assertEquals( "Swaption physical - Hull-White - presentValueHullWhiteSensitivity - long/short parity", pvhwsLong[loophw], -pvhwsShort[loophw], TOLERANCE_PV_DELTA); } } @Test /** Tests payer/receiver/swap parity. */ public void presentValueHullWhiteSensitivitypayerReceiverParityExplicit() { final double[] pvhwsReceiverLong = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_RECEIVER, HW_MULTICURVES); final double[] pvhwsPayerShort = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_SHORT_PAYER, HW_MULTICURVES); for (int loophw = 0; loophw < pvhwsReceiverLong.length; loophw++) { assertEquals( "Swaption physical - Hull-White - present value - payer/receiver/swap parity", 0, pvhwsReceiverLong[loophw] + pvhwsPayerShort[loophw], TOLERANCE_PV_DELTA); } } @Test /** Tests present value curve sensitivity when the valuation date is on trade date. */ public void presentValueCurveSensitivity() { final MultipleCurrencyParameterSensitivity pvpsExact = PS_HW_C.calculateSensitivity( SWAPTION_SHORT_RECEIVER, HW_MULTICURVES, HW_MULTICURVES.getMulticurveProvider().getAllNames()); final MultipleCurrencyParameterSensitivity pvpsFD = PS_HW_FDC.calculateSensitivity(SWAPTION_SHORT_RECEIVER, HW_MULTICURVES); AssertSensivityObjects.assertEquals( "SwaptionPhysicalFixedIborSABRMethod: presentValueCurveSensitivity ", pvpsExact, pvpsFD, TOLERANCE_PV_DELTA); } @Test(enabled = false) /** Tests present value curve sensitivity when the valuation date is on trade date. */ public void presentValueCurveSensitivityStability() { // 5Yx5Y final MultipleCurrencyParameterSensitivity pvpsExact = PS_HW_C.calculateSensitivity( SWAPTION_SHORT_RECEIVER, HW_MULTICURVES, HW_MULTICURVES.getMulticurveProvider().getAllNames()); final double derivativeExact = pvpsExact.totalSensitivity(MULTICURVES.getFxRates(), EUR); final double startingShift = 1.0E-4; final double ratio = Math.sqrt(2.0); final int nbShift = 55; final double[] eps = new double[nbShift + 1]; final double[] derivative_FD = new double[nbShift]; final double[] diff = new double[nbShift]; eps[0] = startingShift; for (int loopshift = 0; loopshift < nbShift; loopshift++) { final ParameterSensitivityHullWhiteDiscountInterpolatedFDCalculator fdShift = new ParameterSensitivityHullWhiteDiscountInterpolatedFDCalculator(PVHWC, eps[loopshift]); final MultipleCurrencyParameterSensitivity pvpsFD = fdShift.calculateSensitivity(SWAPTION_SHORT_RECEIVER, HW_MULTICURVES); derivative_FD[loopshift] = pvpsFD.totalSensitivity(MULTICURVES.getFxRates(), EUR); diff[loopshift] = derivative_FD[loopshift] - derivativeExact; eps[loopshift + 1] = eps[loopshift] / ratio; } // 1Mx5Y final Period expirationPeriod = Period.ofDays( 1); // Period.ofDays(1); Period.ofDays(7); Period.ofMonths(1); Period.ofYears(1); // Period.ofYears(10); final ZonedDateTime expiryDateExp = ScheduleCalculator.getAdjustedDate(REFERENCE_DATE, expirationPeriod, EURIBOR6M, CALENDAR); final ZonedDateTime settlementDateExp = ScheduleCalculator.getAdjustedDate(expiryDateExp, SPOT_LAG, CALENDAR); final double ATM = 0.0151; // 1W: 1.52% - 1M: 1.52% - 1Y: 1.51% - 10Y: 1.51% final SwapFixedIborDefinition swapExpx5YDefinition = SwapFixedIborDefinition.from( settlementDateExp, SWAP_TENOR, EUR1YEURIBOR6M, NOTIONAL, ATM, !FIXED_IS_PAYER); final SwaptionPhysicalFixedIborDefinition swaptionExpx5YDefinition = SwaptionPhysicalFixedIborDefinition.from(EXPIRY_DATE, swapExpx5YDefinition, !IS_LONG); final SwaptionPhysicalFixedIbor swaptionExpx5Y = swaptionExpx5YDefinition.toDerivative(REFERENCE_DATE); // final double forward = swaptionExpx5Y.getUnderlyingSwap().accept(PRDC, MULTICURVES); final MultipleCurrencyParameterSensitivity pvpsExactExp = PS_HW_C.calculateSensitivity( swaptionExpx5Y, HW_MULTICURVES, HW_MULTICURVES.getMulticurveProvider().getAllNames()); final double derivativeExactExp = pvpsExactExp.totalSensitivity(MULTICURVES.getFxRates(), EUR); final double[] derivative_FDExp = new double[nbShift]; final double[] diffExp = new double[nbShift]; for (int loopshift = 0; loopshift < nbShift; loopshift++) { final ParameterSensitivityHullWhiteDiscountInterpolatedFDCalculator fdShift = new ParameterSensitivityHullWhiteDiscountInterpolatedFDCalculator(PVHWC, eps[loopshift]); final MultipleCurrencyParameterSensitivity pvpsFD = fdShift.calculateSensitivity(swaptionExpx5Y, HW_MULTICURVES); derivative_FDExp[loopshift] = pvpsFD.totalSensitivity(MULTICURVES.getFxRates(), EUR); diffExp[loopshift] = derivative_FDExp[loopshift] - derivativeExactExp; } // int t = 0; // t++; } @Test /** Tests long/short parity. */ public void presentValueCurveSensitivityLongShortParityExplicit() { final MultipleCurrencyMulticurveSensitivity pvhwsLong = METHOD_HW.presentValueCurveSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); final MultipleCurrencyMulticurveSensitivity pvhwsShort = METHOD_HW.presentValueCurveSensitivity(SWAPTION_SHORT_PAYER, HW_MULTICURVES); AssertSensivityObjects.assertEquals( "Swaption physical - Hull-White - presentValueCurveSensitivity - long/short parity", pvhwsLong, pvhwsShort.multipliedBy(-1.0), TOLERANCE_PV_DELTA); } @Test /** Tests payer/receiver/swap parity. */ public void presentValueCurveSensitivityPayerReceiverParityExplicit() { final MultipleCurrencyMulticurveSensitivity pvhwsReceiverLong = METHOD_HW.presentValueCurveSensitivity(SWAPTION_LONG_RECEIVER, HW_MULTICURVES); final MultipleCurrencyMulticurveSensitivity pvhwsPayerShort = METHOD_HW.presentValueCurveSensitivity(SWAPTION_SHORT_PAYER, HW_MULTICURVES); final MultipleCurrencyMulticurveSensitivity pvSwap = SWAP_RECEIVER.accept(PVCSDC, MULTICURVES); AssertSensivityObjects.assertEquals( "Swaption physical - Hull-White - presentValueCurveSensitivity - payer/receiver/swap parity", pvSwap.cleaned(TOLERANCE_PV_DELTA), pvhwsReceiverLong.plus(pvhwsPayerShort).cleaned(TOLERANCE_PV_DELTA), TOLERANCE_PV_DELTA); } @Test /** Tests the curve sensitivity in Monte Carlo approach. */ public void presentValueCurveSensitivityMonteCarlo() { final double toleranceDelta = 1.0E+6; // 100 USD by bp final MultipleCurrencyMulticurveSensitivity pvcsExplicit = METHOD_HW .presentValueCurveSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES) .cleaned(TOLERANCE_PV_DELTA); final HullWhiteMonteCarloMethod methodMC = new HullWhiteMonteCarloMethod( new NormalRandomNumberGenerator(0.0, 1.0, new MersenneTwister()), NB_PATH); final MultipleCurrencyMulticurveSensitivity pvcsMC = methodMC .presentValueCurveSensitivity(SWAPTION_LONG_PAYER, EUR, HW_MULTICURVES) .cleaned(TOLERANCE_PV_DELTA); AssertSensivityObjects.assertEquals( "Swaption physical - Hull-White - presentValueCurveSensitivity - payer/receiver/swap parity", pvcsExplicit, pvcsMC, toleranceDelta); } @Test(enabled = false) /** Tests of performance. "enabled = false" for the standard testing. */ public void performance() { long startTime, endTime; final int nbTest = 1000; MultipleCurrencyAmount pvPayerLongExplicit = MultipleCurrencyAmount.of(EUR, 0.0); MultipleCurrencyAmount pvPayerLongIntegration = MultipleCurrencyAmount.of(EUR, 0.0); MultipleCurrencyAmount pvPayerLongApproximation = MultipleCurrencyAmount.of(EUR, 0.0); @SuppressWarnings("unused") MultipleCurrencyAmount pvPayerLongMC = MultipleCurrencyAmount.of(EUR, 0.0); double[] pvhws = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); MultipleCurrencyMulticurveSensitivity pvcs = METHOD_HW.presentValueCurveSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvPayerLongExplicit = METHOD_HW.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " pv swaption Hull-White explicit method: " + (endTime - startTime) + " ms"); // Performance note: HW price: 19-Nov-2012: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: 380 ms for // 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvhws = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " HW sensitivity swaption Hull-White explicit method: " + (endTime - startTime) + " ms"); // Performance note: HW sensitivity (3): 19-Nov-2012: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: // 430 ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvcs = METHOD_HW.presentValueCurveSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " curve sensitivity swaption Hull-White explicit method: " + (endTime - startTime) + " ms"); // Performance note: curve sensitivity (40): 19-Nov-2012: On Mac Pro 3.2 GHz Quad-Core Intel // Xeon: 855 ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvhws = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); pvcs = METHOD_HW.presentValueCurveSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); pvhws = METHOD_HW.presentValueHullWhiteSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " price/delta/vega swaption Hull-White explicit method: " + (endTime - startTime) + " ms"); // Performance note: present value/delta/vega: 19-Nov-2012: On Mac Pro 3.2 GHz Quad-Core Intel // Xeon: 1730 ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvPayerLongIntegration = METHOD_HW_INTEGRATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " swaption Hull-White numerical integration method: " + (endTime - startTime) + " ms"); // Performance note: HW numerical integration: 19-Nov-2012: On Mac Pro 3.2 GHz Quad-Core Intel // Xeon: 1700 ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvPayerLongApproximation = METHOD_HW_APPROXIMATION.presentValue(SWAPTION_LONG_PAYER, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " swaption Hull-White approximation method: " + (endTime - startTime) + " ms"); // Performance note: HW approximation: 19-Nov-2012: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: 250 // ms for 10000 swaptions. startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvPayerLongMC = METHOD_HW_MONTECARLO.presentValue(SWAPTION_LONG_PAYER, EUR, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " swaption Hull-White Monte Carlo method (" + NB_PATH + " paths): " + (endTime - startTime) + " ms"); // Performance note: HW approximation: 18-Aug-11: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: 9200 // ms for 1000 swaptions (12500 paths). final double difference = pvPayerLongExplicit.getAmount(EUR) - pvPayerLongIntegration.getAmount(EUR); final double difference2 = pvPayerLongExplicit.getAmount(EUR) - pvPayerLongApproximation.getAmount(EUR); // double difference3 = pvPayerLongExplicit.getAmount(CUR) - pvPayerLongMC.getAmount(CUR); System.out.println("Difference explicit-integration: " + difference); System.out.println("Difference explicit-approximation: " + difference2); // System.out.println("Difference explicit-Monte Carlo: " + difference3); System.out.println("Curve sensitivity: " + pvcs.toString()); System.out.println("HW sensitivity: " + Arrays.toString(pvhws)); } @Test(enabled = false) /** Tests of performance. "enabled = false" for the standard testing. */ public void performanceCurveSensitivity() { long startTime, endTime; final int nbTest = 25; MultipleCurrencyAmount pvMC = MultipleCurrencyAmount.of(EUR, 0.0); final MultipleCurrencyMulticurveSensitivity pvcsExplicit = METHOD_HW.presentValueCurveSensitivity(SWAPTION_LONG_PAYER, HW_MULTICURVES); MultipleCurrencyMulticurveSensitivity pvcsMC = pvcsExplicit; final HullWhiteMonteCarloMethod methodMC = new HullWhiteMonteCarloMethod( new NormalRandomNumberGenerator(0.0, 1.0, new MersenneTwister()), NB_PATH); startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvMC = METHOD_HW_MONTECARLO.presentValue(SWAPTION_LONG_PAYER, EUR, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " swaption Hull-White Monte Carlo method (" + NB_PATH + " paths): " + (endTime - startTime) + " ms / price:" + pvMC.toString()); // Performance note: HW approximation: 03-Dec-2012: On Mac Pro 3.2 GHz Quad-Core Intel Xeon: 250 // ms for 25 swaptions (12500 paths). startTime = System.currentTimeMillis(); for (int looptest = 0; looptest < nbTest; looptest++) { pvcsMC = methodMC.presentValueCurveSensitivity(SWAPTION_LONG_PAYER, EUR, HW_MULTICURVES); } endTime = System.currentTimeMillis(); System.out.println( nbTest + " curve sensitivity swaption Hull-White MC method: (" + NB_PATH + " paths) " + (endTime - startTime) + " ms / risk:" + pvcsMC.toString()); // Performance note: curve sensitivity (40): 03-Dec-2012: On Mac Pro 3.2 GHz Quad-Core Intel // Xeon: 600 ms for 25 swaptions (12500 paths). } }
/** * Method to compute the bond futures security results with the price computed as the cheapest * forward. */ public final class BondFuturesSecurityHullWhiteNumericalIntegrationMethod { /** Creates the method unique instance. */ private static final BondFuturesSecurityHullWhiteNumericalIntegrationMethod INSTANCE = new BondFuturesSecurityHullWhiteNumericalIntegrationMethod(); /** * Return the method unique instance. * * @return The instance. */ public static BondFuturesSecurityHullWhiteNumericalIntegrationMethod getInstance() { return INSTANCE; } /** Constructor. */ private BondFuturesSecurityHullWhiteNumericalIntegrationMethod() {} /** The model used in computations. */ private static final HullWhiteOneFactorPiecewiseConstantInterestRateModel MODEL = new HullWhiteOneFactorPiecewiseConstantInterestRateModel(); /** The cash flow equivalent calculator used in computations. */ private static final CashFlowEquivalentCalculator CFEC = CashFlowEquivalentCalculator.getInstance(); /** Minimal number of integration steps in the replication. */ private static final int NB_INTEGRATION = 15; /** Function to compute the minimum of an array. */ private static final Min MIN_FUNCTION = new Min(); /** * Computes the future price from the curves used to price the underlying bonds and a Hull-White * one factor model. Computation by numerical integration. * * @param futures The future security. * @param data The curve and Hull-White parameters. * @return The future price. */ public double price( final BondFuturesSecurity futures, final HullWhiteIssuerProviderInterface data) { ArgumentChecker.notNull(futures, "Futures"); ArgumentChecker.notNull(data, "Hull-White/Issuer provider"); final Currency ccy = futures.getCurrency(); final LegalEntity issuer = futures.getDeliveryBasketAtDeliveryDate()[0].getIssuerEntity(); final double expiryTime = futures.getNoticeLastTime(); final double deliveryTime = futures.getDeliveryLastTime(); final int nbBonds = futures.getDeliveryBasketAtDeliveryDate().length; final int[] nbPayments = new int[nbBonds]; final AnnuityPaymentFixed[] cfe = new AnnuityPaymentFixed[nbBonds]; for (int loopb = 0; loopb < nbBonds; loopb++) { cfe[loopb] = futures.getDeliveryBasketAtDeliveryDate()[loopb].accept( CFEC, data.getMulticurveProvider()); nbPayments[loopb] = cfe[loopb].getNumberOfPayments(); final PaymentFixed[] payments = new PaymentFixed[nbPayments[loopb] + 1]; payments[0] = new PaymentFixed( ccy, deliveryTime, -futures.getDeliveryBasketAtDeliveryDate()[loopb].getAccruedInterest()); System.arraycopy(cfe[loopb].getPayments(), 0, payments, 1, nbPayments[loopb]); cfe[loopb] = new AnnuityPaymentFixed(payments); } final double[][] alpha = new double[nbBonds][]; final double[][] beta = new double[nbBonds][]; final double[][] df = new double[nbBonds][]; final double[][] discountedCashFlow = new double[nbBonds][]; for (int loopb = 0; loopb < nbBonds; loopb++) { alpha[loopb] = new double[nbPayments[loopb] + 1]; beta[loopb] = new double[nbPayments[loopb] + 1]; df[loopb] = new double[nbPayments[loopb] + 1]; discountedCashFlow[loopb] = new double[nbPayments[loopb] + 1]; for (int loopcf = 0; loopcf < cfe[loopb].getNumberOfPayments(); loopcf++) { alpha[loopb][loopcf] = MODEL.alpha( data.getHullWhiteParameters(), 0.0, expiryTime, deliveryTime, cfe[loopb].getNthPayment(loopcf).getPaymentTime()); beta[loopb][loopcf] = MODEL.futuresConvexityFactor( data.getHullWhiteParameters(), expiryTime, cfe[loopb].getNthPayment(loopcf).getPaymentTime(), deliveryTime); df[loopb][loopcf] = data.getIssuerProvider() .getDiscountFactor(issuer, cfe[loopb].getNthPayment(loopcf).getPaymentTime()); discountedCashFlow[loopb][loopcf] = df[loopb][loopcf] / df[loopb][0] * cfe[loopb].getNthPayment(loopcf).getAmount() * beta[loopb][loopcf] / futures.getConversionFactor()[loopb]; } } // Integration final FuturesIntegrant integrant = new FuturesIntegrant(discountedCashFlow, alpha); final double limit = 10.0; final double absoluteTolerance = 1.0E-2; final double relativeTolerance = 1.0E-6; final RungeKuttaIntegrator1D integrator = new RungeKuttaIntegrator1D(absoluteTolerance, relativeTolerance, NB_INTEGRATION); double price = 0.0; try { price = 1.0 / Math.sqrt(2.0 * Math.PI) * integrator.integrate(integrant, -limit, limit); } catch (final Exception e) { throw new RuntimeException(e); } return price; } /** Inner class to implement the integration used in price replication. */ private static final class FuturesIntegrant extends Function1D<Double, Double> { private final double[][] _discountedCashFlow; private final double[][] _alpha; private final int _nbBonds; /** * Constructor to the integrant function. * * @param discountedCashFlow The discounted cash flows. * @param alpha The bond volatilities. */ public FuturesIntegrant(final double[][] discountedCashFlow, final double[][] alpha) { _discountedCashFlow = discountedCashFlow; _alpha = alpha; _nbBonds = discountedCashFlow.length; } @Override public Double evaluate(final Double x) { double[] bond = new double[_nbBonds]; for (int loopb = 0; loopb < _nbBonds; loopb++) { for (int loopcf = 0; loopcf < _discountedCashFlow[loopb].length; loopcf++) { bond[loopb] += _discountedCashFlow[loopb][loopcf] * Math.exp(-(x + _alpha[loopb][loopcf]) * (x + _alpha[loopb][loopcf]) / 2.0); } } return MIN_FUNCTION.evaluate(bond); } } }
/** * Calculator of decision schedule for different instruments. Used in particular for Monte Carlo * pricing. */ public class DecisionScheduleCalculator extends InstrumentDerivativeVisitorAdapter<MulticurveProviderInterface, DecisionSchedule> { /** The unique instance of the calculator. */ private static final DecisionScheduleCalculator INSTANCE = new DecisionScheduleCalculator(); /** Constructor. */ DecisionScheduleCalculator() {} /** * Gets the calculator instance. * * @return The calculator. */ public static DecisionScheduleCalculator getInstance() { return INSTANCE; } /** The cash-flow equivalent calculator. */ private static final CashFlowEquivalentCalculator CFEC = CashFlowEquivalentCalculator.getInstance(); @Override public DecisionSchedule visitSwaptionPhysicalFixedIbor( final SwaptionPhysicalFixedIbor swaption, final MulticurveProviderInterface multicurves) { final double[] decisionTime = new double[] {swaption.getTimeToExpiry()}; final AnnuityPaymentFixed cfe = swaption.getUnderlyingSwap().accept(CFEC, multicurves); final double[][] impactTime = new double[1][cfe.getNumberOfPayments()]; final double[][] impactAmount = new double[1][cfe.getNumberOfPayments()]; for (int loopcf = 0; loopcf < cfe.getNumberOfPayments(); loopcf++) { impactTime[0][loopcf] = cfe.getNthPayment(loopcf).getPaymentTime(); impactAmount[0][loopcf] = cfe.getNthPayment(loopcf).getAmount(); } final DecisionSchedule decision = new DecisionSchedule(decisionTime, impactTime, impactAmount); return decision; } @Override public DecisionSchedule visitSwaptionCashFixedIbor( final SwaptionCashFixedIbor swaption, final MulticurveProviderInterface multicurves) { final double[] decisionTime = new double[] {swaption.getTimeToExpiry()}; final AnnuityPaymentFixed cfeIbor = swaption.getUnderlyingSwap().getSecondLeg().accept(CFEC, multicurves); final int nbCfeIbor = cfeIbor.getNumberOfPayments(); final int nbCpnFixed = swaption.getUnderlyingSwap().getFixedLeg().getNumberOfPayments(); final double[][] impactTime = new double[1][nbCpnFixed + nbCfeIbor]; final double[][] impactAmount = new double[1][nbCpnFixed + nbCfeIbor]; // Fixed leg for (int loopcf = 0; loopcf < nbCpnFixed; loopcf++) { impactTime[0][loopcf] = swaption.getUnderlyingSwap().getFixedLeg().getNthPayment(loopcf).getPaymentTime(); impactAmount[0][loopcf] = swaption.getUnderlyingSwap().getFixedLeg().getNthPayment(loopcf).getPaymentYearFraction() * swaption.getUnderlyingSwap().getFixedLeg().getNthPayment(loopcf).getNotional(); } // Ibor leg for (int loopcf = 0; loopcf < nbCfeIbor; loopcf++) { impactTime[0][nbCpnFixed + loopcf] = cfeIbor.getNthPayment(loopcf).getPaymentTime(); impactAmount[0][nbCpnFixed + loopcf] = cfeIbor.getNthPayment(loopcf).getAmount(); } final DecisionSchedule decision = new DecisionSchedule(decisionTime, impactTime, impactAmount); return decision; } @Override public DecisionSchedule visitCapFloorIbor( final CapFloorIbor payment, final MulticurveProviderInterface multicurves) { final double[] decisionTime = new double[] {payment.getFixingTime()}; final double fixingStartTime = payment.getFixingPeriodStartTime(); final double fixingEndTime = payment.getFixingPeriodEndTime(); final double paymentTime = payment.getPaymentTime(); final double[][] impactTime = new double[1][]; impactTime[0] = new double[] {fixingStartTime, fixingEndTime, paymentTime}; final double[][] impactAmount = new double[1][]; double forward = multicurves.getForwardRate( payment.getIndex(), payment.getFixingPeriodStartTime(), payment.getFixingPeriodEndTime(), payment.getFixingAccrualFactor()); final double beta = (1.0 + payment.getFixingAccrualFactor() * forward) * multicurves.getDiscountFactor(payment.getCurrency(), payment.getFixingPeriodEndTime()) / multicurves.getDiscountFactor( payment.getCurrency(), payment.getFixingPeriodStartTime()); impactAmount[0] = new double[] {beta, -1.0, 1.0}; final DecisionSchedule decision = new DecisionSchedule(decisionTime, impactTime, impactAmount); return decision; } @Override public DecisionSchedule visitAnnuityCouponIborRatchet( final AnnuityCouponIborRatchet annuity, final MulticurveProviderInterface multicurves) { final int nbCpn = annuity.getNumberOfPayments(); final double[] decisionTime = new double[nbCpn]; final double[][] impactTime = new double[nbCpn][]; final double[][] impactAmount = new double[nbCpn][]; for (int loopcpn = 0; loopcpn < nbCpn; loopcpn++) { final AnnuityPaymentFixed cfe = annuity.getNthPayment(loopcpn).accept(CFEC, multicurves); decisionTime[loopcpn] = annuity.isFixed()[loopcpn] ? 0.0 : ((CouponFloating) annuity.getNthPayment(loopcpn)).getFixingTime(); impactTime[loopcpn] = new double[cfe.getNumberOfPayments()]; impactAmount[loopcpn] = new double[cfe.getNumberOfPayments()]; for (int loopcf = 0; loopcf < cfe.getNumberOfPayments(); loopcf++) { impactTime[loopcpn][loopcf] = cfe.getNthPayment(loopcf).getPaymentTime(); impactAmount[loopcpn][loopcf] = cfe.getNthPayment(loopcf).getAmount(); } } final DecisionSchedule decision = new DecisionSchedule(decisionTime, impactTime, impactAmount); return decision; } }