/** * Creates a new dataset of the same size using random sampling with replacement according to the * given weight vector. The weights of the instances in the new dataset are set to one. The length * of the weight vector has to be the same as the number of instances in the dataset, and all * weights have to be positive. * * @param data the data to be sampled from * @param random a random number generator * @param sampled indicating which instance has been sampled * @return the new dataset * @exception IllegalArgumentException if the weights array is of the wrong length or contains * negative weights. */ public final Instances resampleWithWeights(Instances data, Random random, boolean[] sampled) { double[] weights = new double[data.numInstances()]; for (int i = 0; i < weights.length; i++) { weights[i] = data.instance(i).weight(); } Instances newData = new Instances(data, data.numInstances()); if (data.numInstances() == 0) { return newData; } double[] probabilities = new double[data.numInstances()]; double sumProbs = 0, sumOfWeights = Utils.sum(weights); for (int i = 0; i < data.numInstances(); i++) { sumProbs += random.nextDouble(); probabilities[i] = sumProbs; } Utils.normalize(probabilities, sumProbs / sumOfWeights); // Make sure that rounding errors don't mess things up probabilities[data.numInstances() - 1] = sumOfWeights; int k = 0; int l = 0; sumProbs = 0; while ((k < data.numInstances() && (l < data.numInstances()))) { if (weights[l] < 0) { throw new IllegalArgumentException("Weights have to be positive."); } sumProbs += weights[l]; while ((k < data.numInstances()) && (probabilities[k] <= sumProbs)) { newData.add(data.instance(l)); sampled[l] = true; newData.instance(k).setWeight(1); k++; } l++; } return newData; }
/** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return preedicted class probability distribution * @exception Exception if distribution can't be computed successfully */ @Override public double[] distributionForInstance(Instance instance) throws Exception { double[] sums = new double[instance.numClasses()], newProbs; for (int i = 0; i < m_NumIterations; i++) { if (instance.classAttribute().isNumeric() == true) { sums[0] += m_Classifiers[i].classifyInstance(instance); } else { newProbs = m_Classifiers[i].distributionForInstance(instance); for (int j = 0; j < newProbs.length; j++) sums[j] += newProbs[j]; } } if (instance.classAttribute().isNumeric() == true) { sums[0] /= m_NumIterations; return sums; } else if (Utils.eq(Utils.sum(sums), 0)) { return sums; } else { Utils.normalize(sums); return sums; } }