/** * Extract (dense) rows from given chunks, one Vec at a time - should be slightly faster than * per-row * * @param chunks - chunk of dataset * @return array of dense rows */ public final Row[] extractDenseRowsVertical(Chunk[] chunks) { Row[] rows = new Row[chunks[0]._len]; for (int i = 0; i < rows.length; ++i) { rows[i] = new Row(false, _nums, _cats, _responses, 0); rows[i].rid = chunks[0].start() + i; if (_offset) { rows[i].offset = chunks[offsetChunkId()].atd(i); if (Double.isNaN(rows[i].offset)) rows[i].bad = true; } if (_weights) { rows[i].weight = chunks[weightChunkId()].atd(i); if (Double.isNaN(rows[i].weight)) rows[i].bad = true; } } for (int i = 0; i < _cats; ++i) { for (int r = 0; r < chunks[0]._len; ++r) { Row row = rows[r]; if (row.bad) continue; if (chunks[i].isNA(r)) { if (_skipMissing) { row.bad = true; } else row.binIds[row.nBins++] = _catOffsets[i + 1] - 1; // missing value turns into extra (last) factor } else { int c = getCategoricalId(i, (int) chunks[i].at8(r)); if (c >= 0) row.binIds[row.nBins++] = c; } } } int numStart = numStart(); // generic numbers for (int cid = 0; cid < _nums; ++cid) { Chunk c = chunks[_cats + cid]; for (int r = 0; r < c._len; ++r) { Row row = rows[r]; if (row.bad) continue; if (c.isNA(r)) row.bad = _skipMissing; double d = c.atd(r); if (_normMul != null && _normSub != null) // either none or both d = (d - _normSub[cid]) * _normMul[cid]; row.numVals[numStart + cid] = d; } } // response(s) for (int i = 1; i <= _responses; ++i) { Chunk rChunk = chunks[responseChunkId()]; for (int r = 0; r < chunks[0]._len; ++r) { Row row = rows[r]; if (row.bad) continue; row.response[row.response.length - i] = rChunk.atd(r); if (_normRespMul != null) { row.response[i - 1] = (row.response[i - 1] - _normRespSub[i - 1]) * _normRespMul[i - 1]; } if (Double.isNaN(row.response[row.response.length - i])) row.bad = true; } } return rows; }
public final Row extractDenseRow(Chunk[] chunks, int rid, Row row) { row.bad = false; row.rid = rid + chunks[0].start(); row.cid = rid; if (_weights) row.weight = chunks[weightChunkId()].atd(rid); if (row.weight == 0) return row; if (_skipMissing) { int N = _cats + _nums; for (int i = 0; i < N; ++i) if (chunks[i].isNA(rid)) { row.bad = true; return row; } } int nbins = 0; for (int i = 0; i < _cats; ++i) { int cid = getCategoricalId(i, chunks[i].isNA(rid) ? _catModes[i] : (int) chunks[i].at8(rid)); if (cid >= 0) row.binIds[nbins++] = cid; } row.nBins = nbins; final int n = _nums; int numValsIdx = 0; // since we're dense, need a second index to track interaction nums for (int i = 0; i < n; i++) { if (isInteractionVec( _cats + i)) { // categorical-categorical interaction is handled as plain categorical // (above)... so if we have interactions either v1 is categorical, v2 is // categorical, or neither are categorical int offset = getInteractionOffset(chunks, _cats + i, rid); row.numVals[numValsIdx + offset] = chunks[_cats + i].atd( rid); // essentially: chunks[v1].atd(rid) * chunks[v2].atd(rid) (see // InteractionWrappedVec) numValsIdx += nextNumericIdx(i); } else { double d = chunks[_cats + i].atd(rid); // can be NA if skipMissing() == false if (Double.isNaN(d)) d = _numMeans[i]; if (_normMul != null && _normSub != null) d = (d - _normSub[numValsIdx]) * _normMul[numValsIdx]; row.numVals[numValsIdx++] = d; } } for (int i = 0; i < _responses; ++i) { try { row.response[i] = chunks[responseChunkId(i)].atd(rid); } catch (Throwable t) { throw new RuntimeException(t); } if (_normRespMul != null) row.response[i] = (row.response[i] - _normRespSub[i]) * _normRespMul[i]; if (Double.isNaN(row.response[i])) { row.bad = true; return row; } } if (_offset) row.offset = chunks[offsetChunkId()].atd(rid); return row; }
public final Row extractDenseRow(double[] vals, Row row) { row.bad = false; row.rid = 0; row.cid = 0; if (row.weight == 0) return row; if (_skipMissing) for (double d : vals) if (Double.isNaN(d)) { row.bad = true; return row; } int nbins = 0; for (int i = 0; i < _cats; ++i) { int c = getCategoricalId(i, Double.isNaN(vals[i]) ? _catModes[i] : (int) vals[i]); if (c >= 0) row.binIds[nbins++] = c; } row.nBins = nbins; final int n = _nums; int numValsIdx = 0; for (int i = 0; i < n; ++i) { if (isInteractionVec(i)) { int offset; InteractionWrappedVec iwv = ((InteractionWrappedVec) _adaptedFrame.vec(_cats + i)); int v1 = _adaptedFrame.find(iwv.v1()); int v2 = _adaptedFrame.find(iwv.v2()); if (v1 < _cats) offset = getCategoricalId(v1, Double.isNaN(vals[v1]) ? _catModes[v1] : (int) vals[v1]); else if (v2 < _cats) offset = getCategoricalId(v2, Double.isNaN(vals[v2]) ? _catModes[v1] : (int) vals[v2]); else offset = 0; row.numVals[numValsIdx + offset] = vals[_cats + i]; // essentially: vals[v1] * vals[v2]) numValsIdx += nextNumericIdx(i); } else { double d = vals[_cats + i]; // can be NA if skipMissing() == false if (Double.isNaN(d)) d = _numMeans[numValsIdx]; if (_normMul != null && _normSub != null) d = (d - _normSub[numValsIdx]) * _normMul[numValsIdx]; row.numVals[numValsIdx++] = d; } } int off = responseChunkId(0); for (int i = off; i < Math.min(vals.length, off + _responses); ++i) { try { row.response[i] = vals[responseChunkId(i)]; } catch (Throwable t) { throw new RuntimeException(t); } if (_normRespMul != null) row.response[i] = (row.response[i] - _normRespSub[i]) * _normRespMul[i]; if (Double.isNaN(row.response[i])) { row.bad = true; return row; } } return row; }
public final Row extractDenseRow(Chunk[] chunks, int rid, Row row) { row.bad = false; row.rid = rid + chunks[0].start(); if (_weights) row.weight = chunks[weightChunkId()].atd(rid); if (row.weight == 0) return row; if (_skipMissing) for (Chunk c : chunks) if (c.isNA(rid)) { row.bad = true; return row; } int nbins = 0; for (int i = 0; i < _cats; ++i) { if (chunks[i].isNA(rid)) { if (_imputeMissing) { int c = getCategoricalId(i, _catModes[i]); if (c >= 0) row.binIds[nbins++] = c; } else // TODO: What if missingBucket = false? row.binIds[nbins++] = _catOffsets[i + 1] - 1; // missing value turns into extra (last) factor } else { int c = getCategoricalId(i, (int) chunks[i].at8(rid)); if (c >= 0) row.binIds[nbins++] = c; } } row.nBins = nbins; final int n = _nums; for (int i = 0; i < n; ++i) { double d = chunks[_cats + i].atd(rid); // can be NA if skipMissing() == false if (_imputeMissing && Double.isNaN(d)) d = _numMeans[i]; if (_normMul != null && _normSub != null) d = (d - _normSub[i]) * _normMul[i]; row.numVals[i] = d; } for (int i = 0; i < _responses; ++i) { row.response[i] = chunks[responseChunkId()].atd(rid); if (_normRespMul != null) row.response[i] = (row.response[i] - _normRespSub[i]) * _normRespMul[i]; if (Double.isNaN(row.response[i])) { row.bad = true; return row; } } if (_offset) row.offset = chunks[offsetChunkId()].atd(rid); return row; }
/** * Extract (sparse) rows from given chunks. Note: 0 remains 0 - _normSub of DataInfo isn't used * (mean shift during standarization is not reverted) - UNLESS offset is specified (for GLM only) * Essentially turns the dataset 90 degrees. * * @param chunks - chunk of dataset * @param offset - adjustment for 0s if running with on-the-fly standardization (i.e. zeros are * not really zeros because of centering) * @return array of sparse rows */ public final Row[] extractSparseRows(Chunk[] chunks, double offset) { Row[] rows = new Row[chunks[0]._len]; for (int i = 0; i < rows.length; ++i) { rows[i] = new Row(true, Math.min(_nums, 16), _cats, _responses, offset); rows[i].rid = chunks[0].start() + i; if (_offset) { rows[i].offset = chunks[offsetChunkId()].atd(i); if (Double.isNaN(rows[i].offset)) rows[i].bad = true; } if (_weights) { rows[i].weight = chunks[weightChunkId()].atd(i); if (Double.isNaN(rows[i].weight)) rows[i].bad = true; } } // categoricals for (int i = 0; i < _cats; ++i) { for (int r = 0; r < chunks[0]._len; ++r) { Row row = rows[r]; if (row.bad) continue; if (chunks[i].isNA(r)) { if (_skipMissing) { row.bad = true; } else row.binIds[row.nBins++] = _catOffsets[i + 1] - 1; // missing value turns into extra (last) factor } else { int c = getCategoricalId(i, (int) chunks[i].at8(r)); if (c >= 0) row.binIds[row.nBins++] = c; } } } int numStart = numStart(); // generic numbers for (int cid = 0; cid < _nums; ++cid) { Chunk c = chunks[_cats + cid]; int oldRow = -1; for (int r = c.nextNZ(-1); r < c._len; r = c.nextNZ(r)) { if (c.atd(r) == 0) continue; assert r > oldRow; oldRow = r; Row row = rows[r]; if (row.bad) continue; if (c.isNA(r)) row.bad = _skipMissing; double d = c.atd(r); if (_normMul != null) d *= _normMul[cid]; row.addNum(cid + numStart, d); } } // response(s) for (int i = 1; i <= _responses; ++i) { Chunk rChunk = chunks[responseChunkId()]; for (int r = 0; r < chunks[0]._len; ++r) { Row row = rows[r]; if (row.bad) continue; row.response[row.response.length - i] = rChunk.atd(r); if (_normRespMul != null) { row.response[i - 1] = (row.response[i - 1] - _normRespSub[i - 1]) * _normRespMul[i - 1]; } if (Double.isNaN(row.response[row.response.length - i])) row.bad = true; } } return rows; }
/** * Extract (sparse) rows from given chunks. Note: 0 remains 0 - _normSub of DataInfo isn't used * (mean shift during standarization is not reverted) - UNLESS offset is specified (for GLM only) * Essentially turns the dataset 90 degrees. * * @param chunks - chunk of dataset * @return array of sparse rows */ public final Row[] extractSparseRows(Chunk[] chunks) { Row[] rows = new Row[chunks[0]._len]; long startOff = chunks[0].start(); for (int i = 0; i < rows.length; ++i) { rows[i] = new Row( true, Math.min(_nums, 16), _cats, _responses, i, startOff); // if sparse, _nums is the correct number of nonzero values! i.e., do not // use numNums() rows[i].rid = chunks[0].start() + i; if (_offset) { rows[i].offset = chunks[offsetChunkId()].atd(i); if (Double.isNaN(rows[i].offset)) rows[i].bad = true; } if (_weights) { rows[i].weight = chunks[weightChunkId()].atd(i); if (Double.isNaN(rows[i].weight)) rows[i].bad = true; } if (_skipMissing) { int N = _cats + _nums; for (int c = 0; c < N; ++c) if (chunks[c].isNA(i)) rows[i].bad = true; } } // categoricals for (int i = 0; i < _cats; ++i) { for (int r = 0; r < chunks[0]._len; ++r) { Row row = rows[r]; if (row.bad) continue; int cid = getCategoricalId(i, chunks[i].isNA(r) ? _catModes[i] : (int) chunks[i].at8(r)); if (cid >= 0) row.binIds[row.nBins++] = cid; } } // generic numbers + interactions int interactionOffset = 0; for (int cid = 0; cid < _nums; ++cid) { Chunk c = chunks[_cats + cid]; int oldRow = -1; if (c instanceof InteractionWrappedVec .InteractionWrappedChunk) { // for each row, only 1 value in an interaction is 'hot' // all other values are off (i.e., are 0) for (int r = 0; r < c._len; ++r) { // the vec is "vertically" dense and "horizontally" sparse (i.e., every row has // one, and only one, value) Row row = rows[r]; if (row.bad) continue; if (c.isNA(r)) row.bad = _skipMissing; int cidVirtualOffset = getInteractionOffset( chunks, _cats + cid, r); // the "virtual" offset into the hot-expanded interaction row.addNum( _numOffsets[cid] + cidVirtualOffset, c.atd(r)); // FIXME: if this produces a "true" NA then should sub with mean? with? } interactionOffset += nextNumericIdx(cid); } else { for (int r = c.nextNZ(-1); r < c._len; r = c.nextNZ(r)) { if (c.atd(r) == 0) continue; assert r > oldRow; oldRow = r; Row row = rows[r]; if (row.bad) continue; if (c.isNA(r)) row.bad = _skipMissing; double d = c.atd(r); if (Double.isNaN(d)) d = _numMeans[cid]; if (_normMul != null) d *= _normMul[interactionOffset]; row.addNum(_numOffsets[cid], d); } interactionOffset++; } } // response(s) for (int i = 1; i <= _responses; ++i) { int rid = responseChunkId(i - 1); Chunk rChunk = chunks[rid]; for (int r = 0; r < chunks[0]._len; ++r) { Row row = rows[r]; if (row.bad) continue; row.response[i - 1] = rChunk.atd(r); if (_normRespMul != null) { row.response[i - 1] = (row.response[i - 1] - _normRespSub[i - 1]) * _normRespMul[i - 1]; } if (Double.isNaN(row.response[row.response.length - i])) row.bad = true; } } return rows; }