Exemplo n.º 1
0
  @Override
  protected void originateCommunity(Node node) {
    super.originateCommunity(node);

    // Correct the original community score for the Leung algorithm
    node.setAttribute(marker + ".score", 1.0);
  }
  private void defaultVisit(CFrame frame) {
    MultiGraph graph = this.view.getGraph();
    graph.getNodeSet().clear();
    graph.getEdgeSet().clear();

    // this.baseIRIList = new HashSet<String>();

    // Получение всех элементов и формирование из них визуального части.
    for (OWLNamedIndividual owlName : frame.getContent().getConcepts()) {
      String label = this.model.getLabel(owlName);

      if (label.equals("_EMPTY_")) {
        label = owlName.getIRI().getFragment().toString();
      }

      Node node = graph.addNode(owlName.getIRI().toString());
      node.addAttribute("OWLNamedIndividual", owlName);
      node.addAttribute("ui.label", label);

      if (owlName.getIRI().equals(frame.getTrgConcept().getIRI())) {
        node.setAttribute("ui.class", "concept");
      }
    }

    // Связывает все элементы линиями.
    for (Branch br : frame.getContent().getBranches()) {
      Node nodeSub = null;
      Node nodeObj = null;

      for (Node node : graph.getNodeSet()) {

        if (node.getId().equals(br.getSubject().getIRI().toString())) {
          nodeSub = node;
          continue;
        } else {
          if (node.getId().equals(br.getObject().getIRI().toString())) {
            nodeObj = node;
            continue;
          }
        }

        if (nodeSub != null && nodeObj != null) {
          break;
        }
      }

      // Создает элемент линия для двух node.
      Edge edge = graph.addEdge(br.getBrachIndIRI().toString(), nodeSub, nodeObj, true);

      String labelEdge = this.model.getAnnotationValue(br.getPrp().getIRI());

      if (labelEdge.equals("_EMPTY_")) {
        labelEdge = br.getPrp().getIRI().getFragment().toString();
      }

      edge.addAttribute("ui.label", labelEdge);
    }
  }
Exemplo n.º 3
0
  @Override
  public void computeNode(Node node) {
    /*
     * Recall and update the node current community and previous score
     */
    Object previousCommunity = node.getAttribute(marker);
    Double previousScore = (Double) node.getAttribute(marker + ".score");
    super.computeNode(node);

    /*
     * Update the node label score
     */

    // Handle first iteration
    if (previousCommunity == null) {
      previousCommunity = node.getAttribute(marker);
      previousScore = (Double) node.getAttribute(marker + ".score");
    }

    /*
     * The node is the originator of the community and hasn't changed
     * community at this iteration (or we are at the first simulation step):
     * keep the maximum label score
     */
    if ((node.getAttribute(marker).equals(previousCommunity)) && (previousScore.equals(1.0)))
      node.setAttribute(marker + ".score", 1.0);

    /*
     * Otherwise search for the highest score amongst neighbors and reduce
     * it by decreasing factor
     */
    else {
      Double maxLabelScore = Double.NEGATIVE_INFINITY;
      for (Edge e : node.getEnteringEdgeSet()) {
        Node v = e.getOpposite(node);
        if (v.hasAttribute(marker) && v.getAttribute(marker).equals(node.getAttribute(marker))) {
          if ((Double) v.getAttribute(marker + ".score") > maxLabelScore)
            maxLabelScore = (Double) v.getAttribute(marker + ".score");
        }
      }
      node.setAttribute(marker + ".score", maxLabelScore - delta);
    }
  }
Exemplo n.º 4
0
  /*
   * (non-Javadoc)
   *
   * @see org.graphstream.algorithm.Algorithm#compute()
   */
  public void compute() {
    float min = Float.MAX_VALUE;
    HashSet<Node> centroid = new HashSet<Node>();

    for (Node node : graph.getEachNode()) {
      float m = 0;
      APSP.APSPInfo info = node.getAttribute(apspInfoAttribute);

      if (info == null) System.err.printf("APSPInfo missing. Did you compute APSP before ?\n");

      for (Node other : graph.getEachNode()) {
        if (node != other) {
          double d = info.getLengthTo(other.getId());

          if (d < 0)
            System.err.printf(
                "Found a negative length value in centroid algorithm. " + "Is graph connected ?\n");
          else m += d;
        }
      }

      if (m < min) {
        centroid.clear();
        centroid.add(node);
        min = m;
      } else if (m == min) {
        centroid.add(node);
      }
    }

    for (Node node : graph.getEachNode())
      node.setAttribute(
          centroidAttribute, centroid.contains(node) ? isInCentroid : isNotInCentroid);

    centroid.clear();
  }