예제 #1
0
  /** This method builds an actual tree from multiple path. */
  private ARGState buildTreeFromMultiplePaths(final Collection<ARGPath> targetPaths) {
    ARGState itpTreeRoot = null;
    Deque<ARGState> todo = new ArrayDeque<>(extractTargets(targetPaths));

    // build the tree, bottom-up, starting from the target states
    while (!todo.isEmpty()) {
      final ARGState currentState = todo.removeFirst();

      if (currentState.getParents().iterator().hasNext()) {

        if (!predecessorRelation.containsKey(currentState)) {
          ARGState parentState = currentState.getParents().iterator().next();

          predecessorRelation.put(currentState, parentState);
          successorRelation.put(parentState, currentState);

          todo.addFirst(parentState);
        }

      } else if (itpTreeRoot == null) {
        itpTreeRoot = currentState;
      }
    }

    return itpTreeRoot;
  }
예제 #2
0
 private List<ARGState> chooseIfArbitrary(
     ARGState parent, List<ARGState> pRelevantChildrenOfElement) {
   if (pRelevantChildrenOfElement.size() <= 1) {
     return pRelevantChildrenOfElement;
   }
   List<ARGState> result = new ArrayList<>(2);
   for (ARGState candidate : pRelevantChildrenOfElement) {
     boolean valid = true;
     if (!result.isEmpty()) {
       Set<ARGState> candidateParents = ImmutableSet.copyOf(candidate.getParents());
       Set<ARGState> candidateChildren = ImmutableSet.copyOf(candidate.getChildren());
       for (ARGState chosen : result) {
         if (parent.getEdgesToChild(chosen).equals(parent.getEdgesToChild(candidate))) {
           Set<ARGState> chosenParents = ImmutableSet.copyOf(chosen.getParents());
           Set<ARGState> chosenChildren = ImmutableSet.copyOf(chosen.getChildren());
           if (candidateParents.equals(chosenParents)
               && candidateChildren.equals(chosenChildren)) {
             valid = false;
             break;
           }
         }
       }
     }
     if (valid) {
       result.add(candidate);
     }
   }
   return result;
 }
    private List<BooleanFormula> computeBlockFormulas(final ARGState pRoot)
        throws CPATransferException, InterruptedException {

      final Map<ARGState, ARGState> callStacks =
          new HashMap<>(); // contains states and their next higher callstate
      final Map<ARGState, PathFormula> finishedFormulas = new HashMap<>();
      final List<BooleanFormula> abstractionFormulas = new ArrayList<>();
      final Deque<ARGState> waitlist = new ArrayDeque<>();

      // initialize
      assert pRoot.getParents().isEmpty() : "rootState must be the first state of the program";
      callStacks.put(pRoot, null); // main-start has no callstack
      finishedFormulas.put(pRoot, pfmgr.makeEmptyPathFormula());
      waitlist.addAll(pRoot.getChildren());

      // iterate over all elements in the ARG with BFS
      while (!waitlist.isEmpty()) {
        final ARGState currentState = waitlist.pollFirst();
        if (finishedFormulas.containsKey(currentState)) {
          continue; // already handled
        }

        if (!finishedFormulas.keySet().containsAll(currentState.getParents())) {
          // parent not handled yet, re-queue current element and wait for all parents
          waitlist.addLast(currentState);
          continue;
        }

        // collect formulas for current location
        final List<PathFormula> currentFormulas = new ArrayList<>(currentState.getParents().size());
        final List<ARGState> currentStacks = new ArrayList<>(currentState.getParents().size());
        for (ARGState parentElement : currentState.getParents()) {
          PathFormula parentFormula = finishedFormulas.get(parentElement);
          final CFAEdge edge = parentElement.getEdgeToChild(currentState);
          assert edge != null : "ARG is invalid: parent has no edge to child";

          final ARGState prevCallState;
          // we enter a function, so lets add the previous state to the stack
          if (edge.getEdgeType() == CFAEdgeType.FunctionCallEdge) {
            prevCallState = parentElement;

          } else if (edge.getEdgeType() == CFAEdgeType.FunctionReturnEdge) {
            // we leave a function, so rebuild return-state before assigning the return-value.
            // rebuild states with info from previous state
            assert callStacks.containsKey(parentElement);
            final ARGState callState = callStacks.get(parentElement);

            assert extractLocation(callState).getLeavingSummaryEdge().getSuccessor()
                    == extractLocation(currentState)
                : "callstack does not match entry of current function-exit.";
            assert callState != null || currentState.getChildren().isEmpty()
                : "returning from empty callstack is only possible at program-exit";

            prevCallState = callStacks.get(callState);
            parentFormula =
                rebuildStateAfterFunctionCall(
                    parentFormula,
                    finishedFormulas.get(callState),
                    (FunctionExitNode) extractLocation(parentElement));

          } else {
            assert callStacks.containsKey(parentElement); // check for null is not enough
            prevCallState = callStacks.get(parentElement);
          }

          final PathFormula currentFormula = pfmgr.makeAnd(parentFormula, edge);
          currentFormulas.add(currentFormula);
          currentStacks.add(prevCallState);
        }

        assert currentFormulas.size() >= 1 : "each state except root must have parents";
        assert currentStacks.size() == currentFormulas.size()
            : "number of callstacks must match predecessors";

        // merging after functioncall with different callstates is ugly.
        // this is also guaranteed by the abstraction-locations at function-entries
        // (--> no merge of states with different latest abstractions).
        assert Sets.newHashSet(currentStacks).size() <= 1
            : "function with multiple entry-states not supported";

        callStacks.put(currentState, currentStacks.get(0));

        PathFormula currentFormula;
        final PredicateAbstractState predicateElement =
            extractStateByType(currentState, PredicateAbstractState.class);
        if (predicateElement.isAbstractionState()) {
          // abstraction element is the start of a new part of the ARG

          assert waitlist.isEmpty() : "todo should be empty, because of the special ARG structure";
          assert currentState.getParents().size() == 1
              : "there should be only one parent, because of the special ARG structure";

          // finishedFormulas.clear(); // free some memory
          // TODO disabled, we need to keep callStates for later usage

          // start new block with empty formula
          currentFormula = getOnlyElement(currentFormulas);
          abstractionFormulas.add(currentFormula.getFormula());
          currentFormula = pfmgr.makeEmptyPathFormula(currentFormula);

        } else {
          // merge the formulas
          Iterator<PathFormula> it = currentFormulas.iterator();
          currentFormula = it.next();
          while (it.hasNext()) {
            currentFormula = pfmgr.makeOr(currentFormula, it.next());
          }
        }

        assert !finishedFormulas.containsKey(currentState) : "a state should only be finished once";
        finishedFormulas.put(currentState, currentFormula);
        waitlist.addAll(currentState.getChildren());
      }
      return abstractionFormulas;
    }
예제 #4
0
  private Collection<Edge> handleEdge(
      Edge nextEdge,
      Map<Integer, MergeNode> mergeNodes,
      Set<ARGState> elementsOnPath,
      EdgeVisitor callback) {
    ARGState childElement = nextEdge.getChildState();
    CFAEdge edge = nextEdge.getEdge();
    Stack<FunctionBody> functionStack = nextEdge.getStack();

    // clone stack to have a different representation of the function calls and conditions
    // for every element
    functionStack = cloneStack(functionStack);

    // we do not have a single edge, instead a dynamic multi-edge
    if (edge == null) {
      List<CFAEdge> edges = nextEdge.getParentState().getEdgesToChild(childElement);
      for (CFAEdge inner : edges) {
        callback.visit(childElement, inner, functionStack);
      }
    } else {
      callback.visit(childElement, edge, functionStack);
    }

    // how many parents does the child have?
    // ignore parents not on the error path
    int noOfParents = from(childElement.getParents()).filter(in(elementsOnPath)).size();
    assert noOfParents >= 1;

    // handle merging if necessary
    if (noOfParents > 1) {
      assert !((edge instanceof CFunctionCallEdge) || (childElement.isTarget()));

      // this is the end of a condition, determine whether we should continue or backtrack

      int elemId = childElement.getStateId();
      FunctionBody currentFunction = functionStack.peek();
      currentFunction.write("goto label_" + elemId + ";");

      // get the merge node for that node
      MergeNode mergeNode = mergeNodes.get(elemId);
      // if null create new and put in the map
      if (mergeNode == null) {
        mergeNode = new MergeNode(elemId);
        mergeNodes.put(elemId, mergeNode);
      }

      // this tells us the number of edges (entering that node) processed so far
      int noOfProcessedBranches = mergeNode.addBranch(currentFunction);

      // if all edges are processed
      if (noOfParents == noOfProcessedBranches) {
        // all branches are processed, now decide which nodes to remove from the stack
        List<FunctionBody> incomingStacks = mergeNode.getIncomingStates();

        FunctionBody newFunction = processIncomingStacks(incomingStacks);

        // replace the current function body with the right one
        functionStack.pop();
        functionStack.push(newFunction);

        newFunction.write("label_" + elemId + ": ;");

      } else {
        return Collections.emptySet();
      }
    }

    return getRelevantChildrenOfState(childElement, functionStack, elementsOnPath);
  }
  private ARGState relocateRefinementRoot(
      final ARGState pRefinementRoot, final boolean predicatePrecisionIsAvailable)
      throws InterruptedException {

    // no relocation needed if only running value analysis,
    // because there, this does slightly degrade performance
    // when running VA+PA, merging/covering and refinements
    // of both CPAs could lead to the state, where in two
    // subsequent refinements, two identical error paths
    // were found, through different parts of the ARG
    // So now, when running VA+PA, the refinement root
    // is set to the lowest common ancestor of those states
    // that are covered by the states in the subtree of the
    // original refinement root
    if (!predicatePrecisionIsAvailable) {
      return pRefinementRoot;
    }

    // no relocation needed if restart at top
    if (restartStrategy == RestartStrategy.ROOT) {
      return pRefinementRoot;
    }

    Set<ARGState> descendants = pRefinementRoot.getSubgraph();
    Set<ARGState> coveredStates = new HashSet<>();
    shutdownNotifier.shutdownIfNecessary();
    for (ARGState descendant : descendants) {
      coveredStates.addAll(descendant.getCoveredByThis());
    }
    coveredStates.add(pRefinementRoot);

    // no relocation needed if set of descendants is closed under coverage
    if (descendants.containsAll(coveredStates)) {
      return pRefinementRoot;
    }

    Map<ARGState, ARGState> predecessorRelation = Maps.newHashMap();
    SetMultimap<ARGState, ARGState> successorRelation = LinkedHashMultimap.create();

    Deque<ARGState> todo = new ArrayDeque<>(coveredStates);
    ARGState coverageTreeRoot = null;

    // build the coverage tree, bottom-up, starting from the covered states
    while (!todo.isEmpty()) {
      shutdownNotifier.shutdownIfNecessary();
      final ARGState currentState = todo.removeFirst();

      if (currentState.getParents().iterator().hasNext()) {
        ARGState parentState = currentState.getParents().iterator().next();
        todo.add(parentState);
        predecessorRelation.put(currentState, parentState);
        successorRelation.put(parentState, currentState);

      } else if (coverageTreeRoot == null) {
        coverageTreeRoot = currentState;
      }
    }

    // starting from the root of the coverage tree,
    // the new refinement root is either the first node
    // having two or more children, or the original
    // refinement root, what ever comes first
    shutdownNotifier.shutdownIfNecessary();
    ARGState newRefinementRoot = coverageTreeRoot;
    while (successorRelation.get(newRefinementRoot).size() == 1
        && newRefinementRoot != pRefinementRoot) {
      newRefinementRoot = Iterables.getOnlyElement(successorRelation.get(newRefinementRoot));
    }

    rootRelocations.inc();
    return newRefinementRoot;
  }