@Test public void testBruteForce() { /* This test creates a dataset where feature values are multiples of consecutive natural numbers The obtained values are compared to the theoretical mean and std dev */ double tolerancePerc = 0.01; // 0.01% of correct value int nSamples = 5120; int x = 1, y = 2, z = 3; INDArray featureX = Nd4j.linspace(1, nSamples, nSamples).reshape(nSamples, 1).mul(x); INDArray featureY = featureX.mul(y); INDArray featureZ = featureX.mul(z); INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ); INDArray labelSet = Nd4j.zeros(nSamples, 1); DataSet sampleDataSet = new DataSet(featureSet, labelSet); double meanNaturalNums = (nSamples + 1) / 2.0; INDArray theoreticalMean = Nd4j.create(new double[] {meanNaturalNums * x, meanNaturalNums * y, meanNaturalNums * z}); double stdNaturalNums = Math.sqrt((nSamples * nSamples - 1) / 12.0); INDArray theoreticalStd = Nd4j.create(new double[] {stdNaturalNums * x, stdNaturalNums * y, stdNaturalNums * z}); NormalizerStandardize myNormalizer = new NormalizerStandardize(); myNormalizer.fit(sampleDataSet); INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean())); INDArray meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100); double maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0); assertTrue(maxMeanDeltaPerc < tolerancePerc); INDArray stdDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean())); INDArray stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100); double maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0); assertTrue(maxStdDeltaPerc < tolerancePerc); // SAME TEST WITH THE ITERATOR int bSize = 10; tolerancePerc = 1; // 1% of correct value DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize); myNormalizer.fit(sampleIter); meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean())); meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100); maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0); assertTrue(maxMeanDeltaPerc < tolerancePerc); stdDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean())); stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100); maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0); assertTrue(maxStdDeltaPerc < tolerancePerc); }
@Test public void testUnderOverflow() { // This dataset will be basically constant with a small std deviation // And the constant is large. Checking if algorithm can handle double tolerancePerc = 1; // Within 1 % double toleranceAbs = 0.0005; int nSamples = 1000; int bSize = 10; int x = -1000000, y = 1000000; double z = 1000000; INDArray featureX = Nd4j.rand(nSamples, 1).mul(1).add(x); INDArray featureY = Nd4j.rand(nSamples, 1).mul(2).add(y); INDArray featureZ = Nd4j.rand(nSamples, 1).mul(3).add(z); INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ); INDArray labelSet = Nd4j.zeros(nSamples, 1); DataSet sampleDataSet = new DataSet(featureSet, labelSet); DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize); INDArray theoreticalMean = Nd4j.create(new double[] {x, y, z}); NormalizerStandardize myNormalizer = new NormalizerStandardize(); myNormalizer.fit(sampleIter); INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean())); INDArray meanDeltaPerc = meanDelta.mul(100).div(theoreticalMean); assertTrue(meanDeltaPerc.max(1).getDouble(0, 0) < tolerancePerc); // this just has to not barf // myNormalizer.transform(sampleIter); myNormalizer.transform(sampleDataSet); }
@Test public void testTransform() { /*Random dataset is generated such that AX + B where X is from a normal distribution with mean 0 and std 1 The mean of above will be B and std A Obtained mean and std dev are compared to theoretical Transformed values should be the same as X with the same seed. */ long randSeed = 7139183; int nFeatures = 2; int nSamples = 6400; int bsize = 8; int a = 2; int b = 10; INDArray sampleMean, sampleStd, sampleMeanDelta, sampleStdDelta, delta, deltaPerc; double maxDeltaPerc, sampleMeanSEM; genRandomDataSet normData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed); genRandomDataSet expectedData = new genRandomDataSet(nSamples, nFeatures, 1, 0, randSeed); genRandomDataSet beforeTransformData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed); NormalizerStandardize myNormalizer = new NormalizerStandardize(); DataSetIterator normIterator = normData.getIter(bsize); DataSetIterator expectedIterator = expectedData.getIter(bsize); DataSetIterator beforeTransformIterator = beforeTransformData.getIter(bsize); myNormalizer.fit(normIterator); double tolerancePerc = 5.0; // within 5% sampleMean = myNormalizer.getMean(); sampleMeanDelta = Transforms.abs(sampleMean.sub(normData.theoreticalMean)); assertTrue( sampleMeanDelta.mul(100).div(normData.theoreticalMean).max(1).getDouble(0, 0) < tolerancePerc); // sanity check to see if it's within the theoretical standard error of mean sampleMeanSEM = sampleMeanDelta.div(normData.theoreticalSEM).max(1).getDouble(0, 0); assertTrue(sampleMeanSEM < 2.6); // 99% of the time it should be within this many SEMs tolerancePerc = 10.0; // within 10% sampleStd = myNormalizer.getStd(); sampleStdDelta = Transforms.abs(sampleStd.sub(normData.theoreticalStd)); assertTrue( sampleStdDelta.div(normData.theoreticalStd).max(1).mul(100).getDouble(0, 0) < tolerancePerc); normIterator.setPreProcessor(myNormalizer); while (normIterator.hasNext()) { INDArray before = beforeTransformIterator.next().getFeatures(); INDArray after = normIterator.next().getFeatures(); INDArray expected = expectedIterator.next().getFeatures(); delta = Transforms.abs(after.sub(expected)); deltaPerc = delta.div(before.sub(expected)); deltaPerc.muli(100); maxDeltaPerc = deltaPerc.max(0, 1).getDouble(0, 0); // System.out.println("=== BEFORE ==="); // System.out.println(before); // System.out.println("=== AFTER ==="); // System.out.println(after); // System.out.println("=== SHOULD BE ==="); // System.out.println(expected); assertTrue(maxDeltaPerc < tolerancePerc); } }