/** @param evts Events to add. */ private void addAll(Collection<E> evts) { WindowHolder tup = ref.get(); int cnt = addAllInternal(evts, tup.collection(), tup.set()); tup.size().addAndGet(cnt); }
/** * Completeness callback. * * @param success {@code True} if lock was acquired. * @param distribute {@code True} if need to distribute lock removal in case of failure. * @return {@code True} if complete by this operation. */ private boolean onComplete(boolean success, boolean distribute) { if (log.isDebugEnabled()) log.debug( "Received onComplete(..) callback [success=" + success + ", distribute=" + distribute + ", fut=" + this + ']'); if (!success) undoLocks(distribute); if (tx != null) cctx.tm().txContext(tx); if (super.onDone(success, err.get())) { if (log.isDebugEnabled()) log.debug("Completing future: " + this); // Clean up. cctx.mvcc().removeFuture(this); if (timeoutObj != null) cctx.time().removeTimeoutObject(timeoutObj); return true; } return false; }
/** {@inheritDoc} */ @Override protected Collection<E> dequeue0(int cnt) { WindowHolder tup = ref.get(); AtomicInteger size = tup.size(); Collection<T> evts = tup.collection(); Collection<E> resCol = new ArrayList<>(cnt); while (true) { int curSize = size.get(); if (curSize > 0) { if (size.compareAndSet(curSize, curSize - 1)) { E res = pollInternal(evts, tup.set()); if (res != null) { resCol.add(res); if (resCol.size() >= cnt) return resCol; } else { size.incrementAndGet(); return resCol; } } } else return resCol; } }
/** * Poll evicted internal implementation. * * @return Evicted element. */ @Nullable private E pollEvictedInternal() { WindowHolder tup = ref.get(); AtomicInteger size = tup.size(); while (true) { int curSize = size.get(); if (curSize > maxSize) { if (size.compareAndSet(curSize, curSize - 1)) { E evt = pollInternal(tup.collection(), tup.set()); if (evt != null) return evt; else { // No actual events in queue, it means that other thread is just adding event. // return null as it is a concurrent add call. size.incrementAndGet(); return null; } } } else return null; } }
/** Completeness callback. */ private void onComplete() { onDone(tx, err.get()); }
/** * Maps keys to nodes. Note that we can not simply group keys by nodes and send lock request as * such approach does not preserve order of lock acquisition. Instead, keys are split in * continuous groups belonging to one primary node and locks for these groups are acquired * sequentially. * * @param keys Keys. */ private void map(Iterable<? extends K> keys) { try { GridDiscoveryTopologySnapshot snapshot = topSnapshot.get(); assert snapshot != null; long topVer = snapshot.topologyVersion(); assert topVer > 0; if (CU.affinityNodes(cctx, topVer).isEmpty()) { onDone( new GridTopologyException( "Failed to map keys for near-only cache (all " + "partition nodes left the grid).")); return; } ConcurrentLinkedDeque8<GridNearLockMapping<K, V>> mappings = new ConcurrentLinkedDeque8<>(); // Assign keys to primary nodes. GridNearLockMapping<K, V> map = null; for (K key : keys) { GridNearLockMapping<K, V> updated = map(key, map, topVer); // If new mapping was created, add to collection. if (updated != map) mappings.add(updated); map = updated; } if (isDone()) { if (log.isDebugEnabled()) log.debug("Abandoning (re)map because future is done: " + this); return; } if (log.isDebugEnabled()) log.debug("Starting (re)map for mappings [mappings=" + mappings + ", fut=" + this + ']'); // Create mini futures. for (Iterator<GridNearLockMapping<K, V>> iter = mappings.iterator(); iter.hasNext(); ) { GridNearLockMapping<K, V> mapping = iter.next(); GridNode node = mapping.node(); Collection<K> mappedKeys = mapping.mappedKeys(); assert !mappedKeys.isEmpty(); GridNearLockRequest<K, V> req = null; Collection<K> distributedKeys = new ArrayList<>(mappedKeys.size()); boolean explicit = false; for (K key : mappedKeys) { while (true) { GridNearCacheEntry<K, V> entry = null; try { entry = cctx.near().entryExx(key, topVer); if (!cctx.isAll(entry.wrap(false), filter)) { if (log.isDebugEnabled()) log.debug("Entry being locked did not pass filter (will not lock): " + entry); onComplete(false, false); return; } // Removed exception may be thrown here. GridCacheMvccCandidate<K> cand = addEntry(topVer, entry, node.id()); if (isDone()) { if (log.isDebugEnabled()) log.debug( "Abandoning (re)map because future is done after addEntry attempt " + "[fut=" + this + ", entry=" + entry + ']'); return; } if (cand != null) { if (tx == null && !cand.reentry()) cctx.mvcc().addExplicitLock(threadId, cand, snapshot); GridTuple3<GridCacheVersion, V, byte[]> val = entry.versionedValue(); if (val == null) { GridDhtCacheEntry<K, V> dhtEntry = dht().peekExx(key); try { if (dhtEntry != null) val = dhtEntry.versionedValue(topVer); } catch (GridCacheEntryRemovedException ignored) { assert dhtEntry.obsolete() : " Got removed exception for non-obsolete entry: " + dhtEntry; if (log.isDebugEnabled()) log.debug( "Got removed exception for DHT entry in map (will ignore): " + dhtEntry); } } GridCacheVersion dhtVer = null; if (val != null) { dhtVer = val.get1(); valMap.put(key, val); } if (!cand.reentry()) { if (req == null) { req = new GridNearLockRequest<>( topVer, cctx.nodeId(), threadId, futId, lockVer, inTx(), implicitTx(), implicitSingleTx(), read, isolation(), isInvalidate(), timeout, syncCommit(), syncRollback(), mappedKeys.size(), inTx() ? tx.size() : mappedKeys.size(), inTx() ? tx.groupLockKey() : null, inTx() && tx.partitionLock(), inTx() ? tx.subjectId() : null); mapping.request(req); } distributedKeys.add(key); GridCacheTxEntry<K, V> writeEntry = tx != null ? tx.writeMap().get(key) : null; if (tx != null) tx.addKeyMapping(key, mapping.node()); req.addKeyBytes( key, node.isLocal() ? null : entry.getOrMarshalKeyBytes(), retval && dhtVer == null, dhtVer, // Include DHT version to match remote DHT entry. writeEntry, inTx() ? tx.entry(key).drVersion() : null, cctx); // Clear transfer required flag since we are sending message. if (writeEntry != null) writeEntry.transferRequired(false); } if (cand.reentry()) explicit = tx != null && !entry.hasLockCandidate(tx.xidVersion()); } else // Ignore reentries within transactions. explicit = tx != null && !entry.hasLockCandidate(tx.xidVersion()); if (explicit) tx.addKeyMapping(key, mapping.node()); break; } catch (GridCacheEntryRemovedException ignored) { assert entry.obsolete() : "Got removed exception on non-obsolete entry: " + entry; if (log.isDebugEnabled()) log.debug("Got removed entry in lockAsync(..) method (will retry): " + entry); } } // Mark mapping explicit lock flag. if (explicit) { boolean marked = tx != null && tx.markExplicit(node.id()); assert tx == null || marked; } } if (!distributedKeys.isEmpty()) mapping.distributedKeys(distributedKeys); else { assert mapping.request() == null; iter.remove(); } } cctx.mvcc().recheckPendingLocks(); proceedMapping(mappings); } catch (GridException ex) { onError(ex); } }
/** * Get underlying collection. * * @return Collection. */ @SuppressWarnings("ConstantConditions") protected Collection<T> collection() { return ref.get().get1(); }
/** Checks window consistency. Used for testing. */ void consistencyCheck() { WindowHolder win = ref.get(); consistencyCheck(win.collection(), win.set(), win.size()); }
/** @param evt Event to add. */ private void add(E evt) { WindowHolder tup = ref.get(); if (addInternal(evt, tup.collection(), tup.set())) tup.size().incrementAndGet(); }
/** {@inheritDoc} */ @Override protected GridStreamerWindowIterator<E> iterator0() { WindowHolder win = ref.get(); return iteratorInternal(win.collection(), win.set(), win.size()); }
/** {@inheritDoc} */ @Override public int size() { int size = ref.get().size().get(); return size > 0 ? size : 0; }